EMBEDDED SYSTEM DESIGN (10EC74)

UNIT 2

The Hardware Side An Introduction, The Core Level, Representing otnfation,
Understanding Numbers, Addresses, Instructions, isReg-A First Look, Embedded
Systems-An Instruction Set View, Embedded Systeni®efister View, Register View of a
Microprocessor The Hardware Side: Storage Elenmamtd-inite-State Machines (2 hour) The
concepts of State and Time, The State Diagramte=8tate Machines- A Theoretical Model.

An Introduction

As we know theessential elementfor an embedded system are hardware, software and
firmware and each will bring out strengths and wesses of the embedded system. Here we
study about the high level structure and componehtee embedded systems are hardware
and computing core of an embedded application. Tdwae is usually manifest as a
microprocessor, microcomputer, and microcontroller.

In today’s high-tech and changing world, we can mgether aworking hierarchy of
hardware components. At the top, we find VLSI (Vdrgrge-Scale Integrated) circuits
comprising significant pieces of functionality: moprocessors, microcontrollers, FPGAs
(Field Programmable Gate Arrays), (C)PLDs ((Compksogrammable Logic Devices), and
ASICs (Application Specific Integrated CircuitsrRaps we could include memories as well.
At the next level down, we find MSI (Medium-Scalgdgrated) circuits, which bring smaller,
yet complete, pieces of functionality. Going dowreanore step, we have SSI (Small-Scale
Integrated) circuits. At the very bottom, we hake &lectrical signals we use to represent our
data and control information and the other sigtted$é come into our system as noise or other
unwanted signals.

Throughout our studies on the hardware side, wieunvize theVerilog modelling language

to enable us to test, confirm, and demonstrateitdglity of our designs prior to committing
to hardware. The language will enable us to wonkaaibus levels of detail at thep or
behavioral level, we can confirm high-level functioality, and at thelower level or
structural level, we can confirm details of timing,scheduling, and control Facility at both
levels is essential today.

Our study of the hardware side of embedded systemgms with a high-level view of the
computing core of the system. We will expand arftheethat view to include a detailed
discussion of the hardware (and its interactiorhwhite software) both inside and outside of
that core. Figure 2.1 illustrates the sequenceoew.

1 ———
DEPT OF ECE, AGMRCET VARUR 1

EMBEDDED SYSTEM DESIGN (10EC74)

nstruction Set
Architecture

. Register \
Transfer Level
} Physical \

Hardware and
Environment

Figure 2.1 Exploring Embedded Systems

The computing core is the central hardware componentn any modern embedded
application. It often appears as a microprocessaicrocomputer, or microcontroller.
Occasionally, it may appear as a custom-designesll \¢ircuit or FPGA. It interacts with and
utilizes the remaining components of the systemmiglement the required application. Such
actions arainder the control of a set of software and firmwarenstructions. Information
and data come into the system from the surroundingronment and from the application.
These data are processed according to the softm&tractions into signals that are sent back
out of the system to the application. The softwaare firmware instructions, as well as signals
coming into or going out of the system, are stoneshemory.

The Core Level

A model comprising foumajor functional blocks (input, output, memory, and datapath and
control) depicting the embedded hardware core aedhigh level signal flow. These are
illustrated in Figure 2.2.

DEPT OF ECE, AGMRCET VARUR 2

EMBEDDED SYSTEM DESIGN (10EC74)

Datapath
and Centrol

[}

— Input » Output F—»

Memary

Figure 2.2 Four Major blocks of an embedded hardware

Figure 2.2 Four Major blocks of an embedded hardywdrememory block serves to hold
collections of program instructionsthat we call software and firmware as well as tvjate
short-term storage for input data, output data, iatetmediate results of computations. Data
as well as other kinds of signals come into théesysrom the external world through the input
block. Once inside of the system, they may be thekto any number of destinations.
Theoutput block provides the means to send data or other signakstbahe outside world.
Thedatapath and control block, more commonly known ashe CPU or central processing
unit, coordinates the activities of the system adl \as performs computations and data
manipulation operations necessary to executingpipdication.

For the execution the CPU fetches instructions from memory, intetprthem, and then
performs the task indicated by the instructionrddimg so, it may retrieve additional data from
memory or from the input block. Often, it will alppoduce information that is sent out of the
system.

We move signals into, out of, or throughout theeyson paths calledusses In their most
common implementation, busses are simply collestiohwires that are carrying related
electrical signals from one place to another.. &8lgflowing on the wires making up the busses
are classified into three major categor@sdress, data and contral

» The data are the key signals that are being max@ahd;

» The address signals identify where the datansicg from and where it is going to.

» The control signals specify and coordinate hosvdhta is transported.

1 ———
DEPT OF ECE, AGMRCET VARUR 3

EMBEDDED SYSTEM DESIGN (10EC74)

The width of a bus that is, the number of signals or bits that i carry simultaneously,
providesan indirect measure of how quickly information canbe moved Transferring 64
bits of data on a bus that is 32 bits wide requinastransfers to move the data. In contrast, a
bus that is only 8 bits wide will require eightrisders. Figure 2.3 illustrates moving such a set
of data over an 8-bit bus from a source module tiestination module. In the model, each
transfer requires one time unit; the process begjirisne t0 and completes at time t7. Time
increases to the left.

1 0 1 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 0 0 0 0 0 0
1 i 0 1 1 i 1 1
Source 1 1 0 0 1 1 1 1 Destination
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 0 1 0 1 0 0
17 16 15 14 3 12 n 10
- time

Figure 2.3 Data movement over an 8-bit bus

The source of the transfer is the array of eighvalues; the destination is perhaps a display.
In Figure 2.4, we refine the high-level functiondiagram to illustrate a typical bus
configuration comprising the address, data, andrablnes.

_____________________ Signals from Signals to Qutside

Outside World World
Control I l T

Mm Input I O\prlﬂ
Datapath I ‘ ‘ ‘

i Address
' v ' Data
Control

Figure 2.4 A typical bus structure comprising address, data and control signals

None of the busses is required to have the saméewwnlines. To avoid cluttering a drawing
by including all of the signals or conducting pathat make up a bus, we will often label the
bus width using the annotation / bus width as tithted in Figure 2.5 In this example, the
address bus is shown to have 18 signals, the data and the control bus 7.

DEPT OF ECE, AGMRCET VARUR 4

EMBEDDED SYSTEM DESIGN (10EC74)

, 18 .
7 Address
o 16 t
— Data
/ 7
= Control

Figure 2.5 Identifying the number of signals in a bus

The microprocessor

A microprocessor is a device that widlceive inputs and process the datand gives the
output. It is often simply referred to as a CPU datapath. Microprocessouiffer in
complexity, power consumption, and cost. Today microprocessorge from devices with
only a few thousand transistors at cost of a doltdess to units with 5 to 10 million transistors
at a cost of several thousand dollars.

Firmware Data
{Program Stora) Memory
Memory
Input / Quipu
Device 1
|
Microprocessor E
)
]
i Outside World
Input / Qutput | Signals
Device E
RAeal-Time E
Clock |
I
Input / Qutout :
Davica

Hosting Application

Figure 2.6 A block diagram for a pp based system

The figure 2.6 shows the microprocessor based edelgedystem, it clearly shows that the
microprocessor solely cannot act as an embedded s because it needs a support from
other peripherals so different blocks such as RO®mMory to store the firmware, RAM
memory to store the data, Real Time Clock to $yrfcilow the time constraints and input and
output peripherals.

DEPT OF ECE, AGMRCET VARUR 5

EMBEDDED SYSTEM DESIGN (10EC74)

The microcomputer

The microcomputer is eomplete computer system that uses a microprocessas a CPU
typically a microcomputer will also utilize numewother large scale integrated circuits to
provide necessary functionality. The complexityted microcomputer varies from simple units
tha ate implemented on a chip along with the saratbunt of on-chip memory and elementary
I/O system to the complex that will have a micrgassor with a wide array of powerful
peripheral circuitry.

The Microcontroller

The block diagram of the microcontroller based edaleel system is shown in figure 2.7 below.
Basically microcontroller it receives the inputrfrahe external world and does some process
on the data and thrmutput of the microcontroller is used to control sene circuitry which is
connected in the periphery of the system.

| Firmware ‘ ‘ Data
(Program Store) Memory
Memory
Input / Qutput
: Device
Microprocessor
Input / Output
Device Outside World
Interface
FReal-Time
Clock Input / Output
Device
Microcontroller
Hosting Application

Figure 2.7 A block diagram for microcontroller based system

The microcontrollecombines microprocessor and rich collection of pepherals such as
timers, data converters, serial and parallel comaations, a direct memory access into a
single integrated circuit. If the designer feelattthe inbuilt memory is not sufficient he can
add an external memory to satisfy the requirements.

1 ———
DEPT OF ECE, AGMRCET VARUR 6

EMBEDDED SYSTEM DESIGN (10EC74)

The Digital Signal Processor

It is asingle purpose microprocessomost widely used in embedded applications. The DSP
is typically used in conjunction with a generalpase processao perform specialized tasks
such as image, speech, audio, or video processuhgsablock diagram is shown in figure 2.8.
The input to the DSP basically and analog sigra@hfthe external world is received through
input block and it willconverted into digital signalusing analog to digital signal for the
internal use. After the signal processing the dlgiignal will beconverted into analog signal
using a digital to analog converter and that sigvilbe given to the external world.

Adcress

A A
Dasa natrctbon
A 'Y) o,
Coatol
A 3
y
lrurrw‘t A y
, i B | v e
GPU .
DSF Care Ragister Arvary Time's
4 [Data
Momcey
oMA A 4 A
Psinry L Andrces
A L
| v y Cata Cals Bus
Y v L A
Caonlre
Y
ALU ! ' yvY
Maltiplior / Asd o R
Ohilto l <|‘>
1O Devices (ADC, DAC, okc.)
ead | ligh Cpccd VO
Sgrals te Outsde Sigraks tom
Waorld Cutside Woid

Figure 2.8 A block diagram for a Digital Signal Processor

One of themajor strengths of the DSHis its ability to perform basic arithmetic compidat
such as multiply, add and shift at the rate ofionl of operations per second.

To support high speed arithmeti¢ multiply-accumulate unit which will perform muygty and
add to the accumulator is performed in a singleatpen, which is useful in matrix operations
is incorporated in DSP.

To facilitate high speed signal processinghe DSP device is architecture as a Harvard rathe
than the Von Neumann, and has multiple computattioniss, large number of registers, and
wide high bandwidth data busses.

DEPT OF ECE, AGMRCET VARUR 7

EMBEDDED SYSTEM DESIGN (10EC74)

Representing information

A data is the very important phenomenorin the embedded systems because throughout the
system whether it is a processing, or controllingnanipulation these will be done only on
data, in addition to this the data only act as ignd output to the systems.

Let us study about how we can represent these kafdsmformation and with such
representation, what limitations we will encounter.

Word Size

The computing engine is classified based on thedfithe data it is handling; this is commonly
known as word size. Generally a word size in a asting engine refers to the size of an integer.
We will assume for the remainder of this study tlatare working with a microprocessor
that is using a word size of 32 bits. Such a devitg called as 32-bit machine and it has 4
bytes of data

The following representations can be used for sareng information as shown in figure 2.9

below.
MSB big endian LSB
31 0
LSB little endian MSB
0 31

Figure 2.9 big endian Vs Little endian notation

In the above shown figure 2.9 the top structureashthe big endian format, and the below
structure show the little endian format, differenicroprocessors, operating systems, and
networks interpret such words in different ways.

In this subjectve will assume a big endian interpretatiorunless it is mentioned.

The interpretation of the order of the bitsust that, an interpretation. There is nothing
inherent in the construction of a number that désavhich end has the MSB or LSB.

Understanding Numbers

1 ———
DEPT OF ECE, AGMRCET VARUR 8

EMBEDDED SYSTEM DESIGN (10EC74)

In the last section we discussed about the dakadcalord size, here we will study the effects
of finite word size on resolution, accuracy, errargl the propagation of errors in different
operations.

In an embedded system, the integers and floating pombers are normally represented as
binary values and are stored either in memory oegistersThe expressive power of any
number is dependent on the number of bits in the nmber.

Resolution

The following table shows if the four bit word isad to hold a number, what is it corresponding
expressive power. If the bits are interpreted gsessing an unsigned integer, the integer may

range from O to 15; the resolution is 20.

Interpretation Expressive Power
Integer 0-15
Real

XXX.X 0-75

XX.XX 0-2.75

XXX 0-1.6875

Interpreting the number with two bits devoted te fractional component provides two digits
of resolution. That is we can express and resoli@ary number to 2.

Example : to represent the number 2.3 using a 4-bit bimanyber with 2 bits of resolution,
the best that one can write is either (10.10) 280.01) 2.25. The error in the expression will
be either +0.2 or -0.05.

Because word size limits one’s ability to expresmhber, eventually we are going to have to
either round or truncate a number inorder to be &bbtore it in internal memory. Among this
which provides the greater accuracy, and whichgivé the best representation of a measured
value?

Let's consider a real number N, following eithemication or rounding of the original number
to fit the microprocessor’s word size, the numbél lmave a fractional component of n bits.
The value of the LSB is 2-n. whether we round ontate, the resulting number will have an

error. The error following the operation is compuliges

Eg = Nundea = N
ET - Nlnlu‘ate -N

DEPT OF ECE, AGMRCET VARUR 9

EMBEDDED SYSTEM DESIGN (10EC74)

The range of the errors of the truncation and rouns as follows

Truncation
2"<E;<0

Rounding

L

Propagation of errors

To represent the data we use a big endian or étilgian methods and the data should be
represented in the available bits. If it does mtetifi a available bits then we do truncation and
rounding but both results will have an error ani trror will propagate throughout the
embedded system.

ADDITION

We can express the numbers with an error as
Nie=N,+E,
Nx=N,+E,;
Nig+Nyp=(N,+E) +(N,+E,)
=N, +N,+E+E,

Observe that the resulting error is the algebrain ef the original errors.

This error is not only propagating through the basathematic calculations. The below
example shows that the electronic circuit will glsopagate the error.

Consider the conventional measuring instrumentisnaeasurement details.

_—Q—W; E=100VDC1%
[=10A%1%
(e) R=10Q+1%

As we know the power can be calculated in threesway

DEPT OF ECE, AGMRCET VARUR 10

EMBEDDED SYSTEM DESIGN (10EC74)

Method 1

El=(100Ft1%)e(104%1%)
= (100010 1%)X((1001%) X (1% *1%)))

= (1000£1.1)
El= 998 9 — 1001 1
Method 2

PR =(104%1%)e(104+1%)e(10Q % 1%)
= (100 +(20 ¢ 1%)+(1% ¢ 1%)) o (10 + 1%)
= (100+02)e(10+1%)
= ((1000+2) +((100 ® 1%) £ (0.2 ® 1%)))
= (1000 £ 3)

'R = 997 = 1003

Method 3

EX (10074 1%)e (100V+ 1%)

R (10Q + 1%)
_ (10000 +2) e (1% +1%)
(10 +1%)

£

7{—:908.9—) 1111.3

The above three results not only yields differemveers but differing in magnitude. $we
designer of embedded system should know the caugehe error, rectification of the error
and impact of the error as well. If the errors aretaken care carefully the safety of the
embedded system will be affected

Addresses

The data in an embedded system will be storedamt&mory; memory is digital hardware and
is used to store multiple bits. These data carcbessed by using addresses. In microprocessor
addresses has unique binary patternThe number of addresses in a memory dependseon th
memory locations. The microprocessor does not stijpegative addresses.

For a word size of 32 bits, the addresses will eatig hex) from 00000000 to FFFFFFFF.
Thus, with 32 bits, we have up to 4,294,967,29@uaicombinations and therefore that same
number of possible addresses.

DEPT OF ECE, AGMRCET VARUR 11

EMBEDDED SYSTEM DESIGN (10EC74)

As data, the addresses also can be representesingyhig endian and little endian methods.
The memory is not only used to store the data, isialso used to store the addresd the
required data the following examples shows the same

int myVar = 10;

int* myVarPtr = &myVar; // take the address of myVar

// assign it to the pointer variable myVarPtr

In the above code we are interested in storing urh® in the memory location 3000 using
pointer function.
When this program executes system will allocateesaddress 5000 to store the address

3000 of the data. Where the number 10 has to bedsto

3000 10 myVar

5000 3000 = myVarPtr

l\‘

Figure 2.10: using the value of one variable tallibk address of another variable
Instructions

Instructions are used ttirect the hardware of the microprocessor to perfom a series of
actions such as Arithmetic and logic, assignment, readiregdata, moving the data in and
through the microprocessor.

An instruction consists of operator and each operegquires entities to operate on called
operands The no of instructions that an instruction operm at any time is calleatity of

the operation.

Look at the following example code

X=Y+Z;

Here we have two operations, the addition operadimhthe assignment operation. First, the
addition operation: that operation is performedwa operands, y and z. The addition operator

is said to be a binary operator—its arity is twew\ the assignment operator: the operation is
__|
DEPT OF ECE, AGMRCET VARUR 12

EMBEDDED SYSTEM DESIGN (10EC74)

performed by giving x the value returned by theitaial operation. It also is performed on two
operands, the result of the addition and the opkxanits arity is two as well.

In C and C++, both operators are referred to aaripioperators. Operators taking only a single
operand have an arity of one and are referred tmasy operators. With one exception, all
operators in C and C++ are either unary or binary.

Let’s look at several common C or C++ instructions

1.x=y;

This is an assignment operation, here the valueigfassigned to the target x. to do this we
require two operands, thus this operator is cdlledry operator. Such instruction is called as
two operand or two address instruction.

2. 2= X+y,

In this instruction two operations are taking plaadition and assignment. Both are binary. If
we ignore the transient intermediate result, wetlsaefor we have three operands, x and y are
sources and z is a destination. Such an instrudidesignated a three-operand or three-address
instruction

3. X=X+Y;

If we ignore the transient intermediate result e®te, we see that for this code we have two
operands, x and y are sources and x is also and#sti. Such an instruction is designated a
two-operand or two-address instruction.

4. ++x or X++

The operation of the above code is pre incremeshpast increment, the operand required here
is one. Such an instruction is designated as apeeand or one-address instruction.

The previous code fragments have illustrated thiegses of instructions we might find in

the system software or firmware. These classetharene, two, or three operand instruction.
Let's now see how we can interpret the bits in @B2vord to reflect such instructions. Any
such interpretation will have to support the apilt express both operands and operations as

seen in Figure 2.11

1 ———
DEPT OF ECE, AGMRCET VARUR 13

EMBEDDED SYSTEM DESIGN (10EC74)

MSB big endian LSE LsB little endian MSB
3 0 0 31
operation operandd operandQ operation
Source and Destination Source and Destinaticn
MSE big endion LSy LSH little endian MSB
3 0 D 31
cperation operandl operando operando operand- operation
Scurce / Destin. Source Source Source / Destin.

MSE big endian ISE LSB little endian VSB
31 0 0 K) |
oparation operand2 | operand? aperand(operand0 | operand! | operand2 operation
Scurce / Source Source Scurce Source Source /

Deslin Destn.

Figure 2.11 Expressing instructions

Register- A first look

The instruction which is used to operate micropssoeis stored in a memory. If the word size
of the operand is more it cannot be stored in a amgrthen thealternative is to store the
operand in the registerscollection of short term memory which is large eglodo hold an
operands. In prior to execution the data has tmbeed in out of memory during fetch and
decode operations of the microprocessor.

Some microprocessors employ few register and tioisgssor is called complex instruction set
computer (CISC). Microprocessors that has large number of regisecalled reduced
instruction set comput€RISC).

Let's assume a hypothetical microprocessor with ibdtructions. To permit each instruction
to be uniquely identified, we will have to specthat the op-code contains 8 bits since 27 <
144 < 28. Let’s further assume that the microprsoes designed to include 256 registers. To
permit each register to be uniquely identified \&ilo require 8 bits.

Our earlier diagram for the various instructiomfiats can now be modified to reflect the new
interpretation of the operand fields as illustrate&igure 2.12.

1 ———
DEPT OF ECE, AGMRCET VARUR 14

EMBEDDED SYSTEM DESIGN (10EC74)

MSB big endian LSB LSB little endian MSB
3 24 23 0 0 23 24 31
operation operand0 operandD operation
Source and Destination Source and Destination
MSB big endian LSB LSB little endian MSB
31 24 23 12 11 0 0 112 23 24 31
operation operand1 operandd operandl operand1 operation
Source / Destin., Source Source Source / Destin
MSB big endian LSB LSB little endian MSB
| 24 23 1615 8 7 0 0 7 8 1516 2324 3
operation cperand2 | operand! | operandd cperand0 | operand! | operand2 operation
Source / Source Souree Source Source Source /
Destin. Destin.

Figure 2.12 Expressing Instructions

The Figure 2.13 summarizes the big endian intempogts of a word in a microprocessor

system. The little endian interpretations followurally.

mMmsna . 3 LsSB
big endian LS8 MaE big endian
31 o 31 o
Unsigned Integer Address
MSB big endian Le MSB big endian Ls8
31 30 0 31 24 23 o
operation operand0
+ /= Source and Destination
Signed Integer
o big endian g i big endian LsB
31 30 23 22 0 a1 24 23 12 11 o
+/~ | exponent mantissa opereton operand operand0
/ Source / Destin. Source
Float
mMse big endien LSe mMmss big endian LsB
1 0 a1 24 23 16 15 87 0
- char? i char0 operation w operandl operand0
Dootin. Oaurce Cource
Character Instruction

Figure 2.13 : Possible Interpretations of a Set of Bits as Big Endian representation. Little Endian
follows similarly

DEPT OF ECE, AGMRCET VARUR 15

EMBEDDED SYSTEM DESIGN (10EC74)

Embedded systems — an instruction set view

The computation engine can be used by developimgMare and executing the same. This
firmware can be developed using high level languageassembly language and
combination of assembly and high level language

A firmware using assembly language can be develoftidreference to the instruction set that
is provided with the microprocessor. An assemlsdex tool that converts assembly language
to machine language in which the firmware is depetbwith opcodes.

Instruction set- Instruction types

The instruction set specifies thasic operationssupported by the machine. The objectives of
the operations are

* To transfer or store data

» To operate on data

» To make decisions on the data values

The instructions in a computation engine are di@skinto

* Data transfer,

* Flow of control,

* Arithmetic and Logic.

Data Transfer Instructions

The data transfer instructions aesponsible for moving data inside the processorrimging

the data in, and sending data outThese instructions consist of source and destimalibe
source and destination may be a register, memorgn dnput or output port. The operations
involved in data transfer instructions are illustthbelow.

1 ———
DEPT OF ECE, AGMRCET VARUR 16

Registeri |—> Register) |—> Register k I
Register i I_,

Hegister |

|

Memory

Register k

Input Port

Output Port

Figure 2.14 data transfer operations

Some of the common instructions used in data teassire listed below.

LD destination, source Load—source operand transferred to destination operand can be
either register or memory location.

ST source, destination Store—source operand transferred to destination operand source
must be a register and the destination must be memory.

MOVE destination, source Transfer from register to register or memory to memory.

XCH destination, source Interchange the source and destination operands.

PUSH/POP Operand pushed onto or popped off of the stack.

IN/OUT destination, source Transfer data from or to an input/output port.

Figure 2.15 Data Transfer Instructions

Addressing modes

» Method to specify the location of data

A portion of each operand field is designated apexification to the hardware as to how to
interpret or use the information in the remainints of the associated address field. That
specification is called thaddress mode for the operand

The address that is ultimately used to select ferand is called theffective address
Addressing modes are included in an instructiaorder to offer the designer greater flexibility
in accessing data and controlling the flow of thegpam as it executes. However, some of the
address variations can impact flow through a prmoges well as the execution time for
individual instructions. Each is identified by aiguee binary bit pattern that is interpreted. The
drawings in Figure 1.18 refine our earlier expressif each instruction format to reflect the

inclusion of the address mode information.
|

DEPT OF ECE, AGMRCET VARUR 17

EMBEDDED SYSTEM DESIGN (10EC74)

MSB big endian LSB LSB little endian MSB
31 0 o 31
oparation g oparand0 operand0 oparation
Source and Destination Source and Destination gg
MSB big endian LSB LSB little endian MSBE
31 o o 31
operation i operandi g operand(operandQ operand1 operation
§ g Saource / Destn. g Source Source g Source / Destin, g g
MSB big endian LSB LSB little endian MSB
31 o 0 31
opalion g operand2 operand1 operand0 operand0 operand1 operand2 opaeration
; Source / ; Source 2l source Source Source 8ol scurces |E
i Destin. § g Destin. g

Figure 2.16 enhanced instruction types

Some of the commonly used addressing modes include

* Immediate

* Direct and indirect

* Register Direct and Register indirect

* Indexed

» Program Counter Relative

Immediate Mode

An immediate mode instruction uses one ofdperand fields to hold the valueof the operand

rather than a reference to it, as shown in Figut@.2

MSB LSB
31 0
operation g B
MOVE #BH
MSB LSB
31 0
operation g e operand1 g B
=
g i
int x = 0xB;

MOVE OPR1, #BH

Figure 2.17: Immediate mode instruction formats

1 ———
DEPT OF ECE, AGMRCET VARUR 18

EMBEDDED SYSTEM DESIGN (10EC74)

The major advantage of such an instruction isttreatumber of memory accesses is reduced
Fetching the instruction retrieves the operantdesame time; there is no need for an additional
access. Such a scheme works well if the value efitimediate operand is small. The
immediate instruction might appear as a one- ordperand instruction as illustrated in Figure
2.17.

The one-operand version contains only the immedialee. Without an explicit destination,
the target must be implied. Typically, that is teumulator in the arithmetic and logic unit
(ALU).

The two-operand version illustrates the operatidmosh the C or C++ level and the assembly
language level. In the former case, the variabie geclared and initialized to the hex value
0xB. Such an expression is compiled into an asselabbuage statement of the kind shown.
On some processors, the instruction mnemonic datggnthat the operation is to use an

immediate operand. In such cases, the instructipnle written as illustrated in Figure 2.18.

STI - Store immediate
LDI / LOADI - Load Immediate
MOVI - Move Immediate

Figure 2.18 Variations on the immediate mode irtsion
Direct and Indirect Modes
When using the direct and indirect addressing madesre working with operand ddresses
rather than operand values. In both cases, thddirsl of address information is contained in
the instruction. The difference between the two esod that, in the direct mode, the contents
of the operand field in the instruction are theradd of the desired operand, whereas in the
indirect case, the field contains the addresseftidress of the operand.
With either mode, the major disadvantage isatiditional memory accesses necessary to
retrieve an operand

In the figure 2.19 two different data transfer @gtems are shown.

DEPT OF ECE, AGMRCET VARUR 19

EMBEDDED SYSTEM DESIGN (10EC74)

memory

MSB LSB
31)

Data L
operand0 ‘\\ Data

Diract \
1
‘\
;
MOVE *OPR1, *OPRO d
*—
*xXPtr = "yPtr;

memory

operation operand1

Address
Mot

Address
Mode

MSB LSB
31 0

Address —
operand0 7
Indirect Data
= Address \\\ Data
MOVE **OPR1, *OPRO -

*xPtrPtr = *yPtrPtr; =

/\—/

Figure 2.19 Direct an Indirect Instruction Formats

-
cperation 9;
3

operand1

Address
Mode

For the direct operation, at the C/C++ level, tladue pointed to by one variable, yPtr, is
assigned to a second variable pointed to by xRtthé& assembly language level, the MOVE
instruction directs that the contents referencedgsrandl be copied to the location referenced
by operandO.

For the indirect operation, at the C/C++ level, ¥hkie of one variable, stored in memory and
pointed to by the pointer variable yPtrPtr, is gsed to a second variable pointed to by a
second pointer variable, xPtrPtr. At the assemdnhgliage level, the MOVE instruction now
directs that the contents of one memory locatiovesas the address in memory of the operand
that is to be assigned to the location in memoeyidied by the second operand.

The double ** symbols preceding the operands initieect access mode indicate that two
levels of indirection are necessary to reach thal operand in memory

Register Direct and Register indirect Modes

In the direct addressing mode ttegjister contains the value of an operandn the indirect
addressing theegister contains the address of an operandrhe register indirect allows us

to use the pointer functions in high level language
I ——

DEPT OF ECE, AGMRCET VARUR 20

EMBEDDED SYSTEM DESIGN (10EC74)

MSB LSB
i 0

operation gg operand1 gg operand0

Register Direct

Register 2 - Register 3
MOVE R2, R3
X =y,
pre
MSB LSB
3 0

operation operand1 Iéjl operand(
Data
Registar indract / \

Register 2 Registar 3 /\/

MOVE R2, *R3 e

-

x = "yPtr; N ;

—~— -

..............

Figure 2.20 Register Indirect data transfer operations

In figure 2.20 two different data transfer operati@re shown. For the register direct operation,
at the C/C++ level, the value of one variable,syassigned to a second variable, x. At the
assembly language level, we assume that the vidugsand y have previously been stored in

registers R2 and R3, respectively. The MOVE ingtomcdirects that the contents of R3 be

copied to R2.

For the register indirect operation, at the C/Cevel, the value of one variable, stored in

memory and pointed to by the pointer variable yBtassigned to a second variable, x. At the
assembly language level, once again we assumdhthatalues for x and yPtr have been

DEPT OF ECE, AGMRCET VARUR 21

EMBEDDED SYSTEM DESIGN (10EC74)

previously stored in registers R2 and R3, respelstihe MOVE instruction now directs that
the contents of R3 serve as an address into meiti@yalue of the variable at that address is
to be retrieved and to be copied into R2.

The * preceding the second operand in the indiresttuction indicates that the assembler is
to set the indirect addressing mode for the infbnc The major disadvantage of indirect
addressing is that an additional memory accessdsssary to retrieve the operand’s value. In
contrast, when utilizing direct addressing, thereadf the operand is found in the register.
Indexed Mode

The indexed or displacement addressing mode is tsealccess container type data
structures such as arrays The effective address is computed asstin® of a base address
and the contents of the indexing register.

Note that during execution neither the base addresthe index values are changed.

MSB LSB
K3 0

operation operand? ;S operand1 operand0

Andress
e
A rens

Indexad

Datal

Register 3 ‘ Register 1 l
A

MOVE R3.R2[R1] %\

x = y[3);

Datat
Data2

Data3

Datad

Datas

Dataé

-
’
’
’
-

Regster 2

Figure 2.21 Indexed Mode Data Transfer Operations

In the figure 2.21, starting at the C/C++ level,lvée an array variable named y and an integer
variable x. The variable x is to be assigned tHaevaontained in the fourth element of the
array.

At the assembler level, the C/C++ fragment getssteded into a three-operand instruction.
The base register, R2, will hold the starting adsli@f the container in this case, the address of
the Oth element of the array named y. The valut@fvariable y contains the address of the
variable Data0, the start of the array. RegistervHlLserve as the index register—that is,

1 ———
DEPT OF ECE, AGMRCET VARUR 22

EMBEDDED SYSTEM DESIGN (10EC74)

provide the offset. At the assembly level, we assuhat the register R1 has already been
initialized to the value 3, the offset into the tainer.

When the instruction is executed, the contentslodf® added to the contents of R2, giving an
address in memory. The value of the data storeteimory at the computed address is retrieved
and written into register R3.

The major disadvantage of indexed addressing isirtee burden associated with computing
the address of the operand and then retrievingahm from memory. Indexing adds a greater
burden to system performance than does indiregeasdhg.

Program counter relative mode

Program counter contains the address of the nextuction to be executed. The program
counter relative mode is similar to the indexed radsing mode withfew important
differences.

» The value in the program counter serves as the address.

» The program counter is assigned the value ottimeputed effective address.

* The offset that is added to the program coumstersigned number.

Thus, the PC contents following the addition of dffiset may refer to an address that is higher
(the offset was positive) or lower (the offset wayative) than the original value and its

mechanism is shown in figure below.

1 ———
DEPT OF ECE, AGMRCET VARUR 23

EMBEDDED SYSTEM DESIGN (10EC74)

MSB LSB
3 a

aparation I‘!;‘ operandD

Frogrem Counder Ralobve

Ml Oy

gt § /—‘_\v

Insdruckem |

Insdructon =1

Irestroticn i+2

Instructon +3

Program Couniar Insdructicen |+4
Imsbrucfion i1#5
ADD PC, [OPRO] okt
Instruction +8
for(i=0; 1<5; |++]
1 /’-_/
I de shuff,

).

Figure 2.22 Program counter relative Operations

For this instruction, operandO is serving as thldeinregister and is holding a value that has
already been stored in it. The effective addressormputed by adding the contents of the
register identified by operandO (R1 in this casedhie contents of the program counter. The
program counter contents are then updated to tivevakie and now refer to the instruction at
the computed address.

In the figure 2.22. The C/C++ code fragment illagts a simple for loop. Following the
execution of the body of the loop, the flow mustuadack to the top of the loop and test the
loop variable once again. A negative offset wouddéhto be added to the contents of the PC
to effect that movement.

The disadvantage of the PC relative mode is tharebe potential degradation of system
performance.

Execution flow

The execution flow or control flow of the each mstion is

* sequential

* branch

* loop

* procedure or function call

1 ———
DEPT OF ECE, AGMRCET VARUR 24

EMBEDDED SYSTEM DESIGN (10EC74)

Sequential flow
Sequential control flow describes thendamental movement through a program Each
instruction contained in the program is executedeqguence, one after another. In the figure

2.23 the sequential flow is shown for both C/C+# assembler.

Initial a=10;
b = 20:
c=a+b;
MOVE R1, #AH; // puts 10 — hex A — into R1

MOVE R2, #14H; // puts 20 — hex 14 — into R2

Final ADD R3, R1, R2; // computes R1 + R2 and puts result into R3

Figure 2.23 Sequential Flow
Branch
A branching construderminates a sequential flowof control with a decision point. At such
a point, one of several alternate paths for coetinexecution is taken based on the outcome

of a test on some condition. Graphically, suchrstoict is seen in Figure 2.24.

Decision Point

Figure 2.24 the branch construct

The branch construct is used to implement an,s#,eswitch, or case statement. The branch
may be executed unconditionally, in which casedtwetents of the PC are replaced by the
effective address specified by the operand. Altetgathe branch may be taken conditionally
based on the side effects of operations performedata or on several different kinds of
comparisons between two variables such as equalgyeater than or less than relationship, a
carry from an arithmetic operation, or a variabdénly equal to or not equal to zero.

The conditional information is temporarily held ascollection of bits in a flag register or

condition code register. The state of each bivéregister is evaluated and potentially changed

1 ———
DEPT OF ECE, AGMRCET VARUR 25

EMBEDDED SYSTEM DESIGN (10EC74)

following the execution of every instruction. Sowfethe typical conditional codes are listed
in the figure 2.25.

E, NE Operand1 is equal/not equal to Operand2.
Z,NZ The result of the operation is zero/not zero.
GT, GE Operand1 is greater than/greater than or equal to Operand2.
LT, LE Operand1 is less than/less than or equal to Operand2.
Vv The operation resulted in an overflow—the result is larger than can be held in the destination.
C.NC The operation produced a carry/no carry.
N The result of the operation is negative.
Figure 2.25 typical conditional codes

Some of the typical branching instructions arestisn the figure 2.26

If-else construct
In the C code in Figure 2.27

The two variables are compared. If they are equad, arithmetic operation is performed,

otherwise a second one is executed. The code fragme&igure 1.32 illustrates the construct
in assembler. We assume that the variables a—eldesmre placed into registers R1-R5. The
compiler will create labels $1 and $2 if the orgisource was written in a high level language
or by the designer if the original source was asdentode.

DEPT OF ECE, AGMRCET VARUR 26

EMBEDDED SYSTEM DESIGN (10EC74)

Loop

The loop construct permits the designer to repeatdy execute a set of instructions either
forever or until some condition is met As Figure 2.28 illustrates, the decision to eatdithe
body of the loop can be made before the loop isredt(entry condition loop) or after the body
of the loop is evaluated (exit condition loop)itie former case, the code may not be executed,
whereas in the latter, the code is executed at tea®. The loop type of construct is seen in

the do, repeat, while, or for statements.

Entry Decision Point

Code

Exit Decision Point

Figure 2.28 the looping construct
The following C/C++ and assembler code fragment&igure 2.29 illustrate a while loop
construct. The body of the loop is continually exzied as long as the loop variable is less than

a specified value. This code fragment implementgrny condition loop. Assume that the

variables myVar and index have been placed in R2R8) respectively.

Stack

The stack is a data structure that occupies anianegemory. It has finite size and supports

several operations. Its structure is similar taaemay except that, unlike an array, data can be
entered or removed at only one location calleddpe The top of the stack is equivalent to the

Oth index in an array. When a new piece of daemtered, everything below is pushed down.

1 ———
DEPT OF ECE, AGMRCET VARUR 27

EMBEDDED SYSTEM DESIGN (10EC74)

Figure 2.30 illustrates a model for the operatimnseveral pieces of dataata entry is called

a push and data removal is called a podn reality, such a model is impractical becauke o
the time burden in moving every piece of data é¢sch a new entry is made. A more practical
implementation adds or removes data at the opemfthe structure.

Figure 2.31: Managing the stack pointer
The memory address reflecting the current top efstlack is remembered and modified after

each addition or removal. Such an address is callgdck pointer. Figure 2.31presents a
modified version of the previous diagram and itatts how the stack pointer is properly

managed.

Push

The push operation puts something onto the topefstack where it is held for later use.
Mechanically, the push operation increments thees$dthat is held by the stack pointer to
refer to the next empty spot (the new top of tlaelst and then writes the data to be stored into
the address in memory designated by that addressveAsee in Figure 2.31, for ease of
implementation, the address contained in the spathter is typically incremented from a
lower memory address to higher memory address.

Pop

The pop operation takes something off the top efdfack by first retrieving the value in the
memory location designated by the stack pointerthed decrementing the address that is held

1 ———
DEPT OF ECE, AGMRCET VARUR 28

EMBEDDED SYSTEM DESIGN (10EC74)

by the stack pointer to refer to the next lowerradd (the new top of the stack). The retrieved
value is returned as the result of the pop operatio

Procedure or Function call

The procedure or function is basicallgubroutine in high level languageWhen the function

is invoked from the main program, it suspend thecexon of main program and change the
control of execution to the subroutines and stexescuting the program in this context and
return to the main program and resume its executionThis process is illustrated in the figure

2.32.

Code i . >
Function Call Function

Figure 2.32 the function or procedure call

The process involving in the function and procedtakis. From a high-level point of view,
code execution proceeds in a sequential mannédrti@tiunction call is encountered. Flow of
control switches to the function, the code compgdhe function body is executed, and flow

returns to the original context as seen in Figudd.2

Arithmetic and Logic
Arithmetic and logical operations are essentiainglets in affecting what the processor is to
do. Such operations are executed by any of selvardivare components comprising the ALU

1 ———
DEPT OF ECE, AGMRCET VARUR 29

EMBEDDED SYSTEM DESIGN (10EC74)

(arithmetic and logic unit). Figure 2.34 presenidagk diagram for a possible functional ALU

architecture.

[L

Register Register
w
W

r L ¥ r F L

Arithmetic Logic I Shifter
nuitiplaxer I

Op-Code State
I Machina ¥

Registar

Figure 2.34 An ALU block diagram

Data is brought into the ALU and held in local stgrs. The op-code is decoded, the
appropriate operation is performed on the seleomeland(s), and the result is placed in

another local register.

Arithmetic

Typically, the processor will support the four lagrithmetic functions: add, subtract,
multiply, and divide. Simpler processors will omgplement the first two, relegating the last
two to a software implementation by the designée @dd and subtraction operations maybe
supported in two versions, with and without camg &@orrow.

The last two versions are intended to support depbtcision operations. Such an
operation is performed in two steps: the first catapon holds any carry (borrow) and then
utilizes that value as a carry in (borrow in) te tbecond step. Most such operations are
implemented to support integer-only computatiohBoting point mathematics is supported,
a separate floating point hardware unit may beuihedl. In addition to the four basic functions,
the processor may also implement hardware increarahtlecrement operations.

The typical arithmetic instructions supported bymprocessor is listed in figure 2.35

1 ———
DEPT OF ECE, AGMRCET VARUR 30

EMBEDDED SYSTEM DESIGN (10EC74)

ADD2, ADD3 il Two or three operands addition

ADDC addition with carry

SUBZ, SUB3 # Twa or throe operands subtraction
SUBB subtraction with borrow

MALIL mulliplication

DIV division

INC increment

DEC decrament

TEST operand tested and specified condition st
TESTSET atomic test and set

Figure 2.35 typical arithmetic instructions

Logical operations
Logical operations perforriraditional binary operations on collections of bis or words

Such operations are particularly usefulembedded applications where biainipulation is
common. Such operations adéscussed in detail in our studies of theftware side of
embedded systems. Typiagerations included in the set of logigatructions are illustrated
in Figure 2.36

AND bitwise AND

OR bitwise OR

XOR bitwise Exclusive OR
MNOT or INW complement

CLR or SET clear or set

CLRC, SETC carmry manipulation

figure 2.36 Typical logical instructions

Shift operations

Shift operations typically perform sevedifferent kinds of shifts on collections of
bits or words. The major differences concern how th boundary values on either side of
the shift are managed Typically, three kinds of shift are supportedyital, arithmetic, and
rotate. Any of the shifts may be implemented akiti ® the left or tahe right.

A logical shift enters a 0 into the position emgtley the shift; the bit on the end is
discarded. An arithmetic shift to the right prop@ga(and preserves) the sign bit into the
vacated position; a shift to the left enters O’slemright-hand side and overwrites the sign bit.
The rotate shift circulates the end bit into theatad bit position on the right- or left-hand side
based on a shift to the left or to the right.

Typical shift operations supported by a computatiewnice are listed in the figure 2.37.

1 ———
DEPT OF ECE, AGMRCET VARUR 31

EMBEDDED SYSTEM DESIGN (10EC74)

SHR operand, count logical shift right
SHL operand, count logical shift left
SHRA operand, count arithmetic shift right
SHLA operand, count arithmetic shift left
ROR operand, count rotate right

ROL operand, count rotate left

Figure 2.37 typical shift operations
Embedded Systems — A register view
As we know the instruction sets are used to opeéh&tenicroprocessor hardware. The
microprocessor hardware consists of control and path blocks as shown in figure 2.38.
In this figure the data path is responsible forfgrening required operations in the
microprocessor, it consists of different types @disters to store the value temporarily. The

control unit control and manage the operations

Control Input Control Qutput
) Canfral |)

Control Signals Status Information

Data Input Data path | Data Output

Figure 2.38 a control and data path block diagram

The Basic Register
A register is a sequential digital circuit whichcapable of storing single or multiple

bits. Here let’s take different abstract view akgister shown in figure 2.39 and 2.40.

o Do DO DO DO DO DO
Dn-1 Dn-1
Dn-1 Dn-1 write Dn-1 write Dn-1
RS — —> — —c> —
readJ readJ I
enable

Figure 2.39 the register at several levels of abstractions — Parallel data entry

DEPT OF ECE, AGMRCET VARUR 32

EMBEDDED SYSTEM DESIGN (10EC74)

From the left the first diagram gives the high leafestraction as the size of the register, then
the second diagram shows the no of inputs and tatpthe register, the third digram includes
two active low inputs to write into and read froegisters. The last diagram illustrates the

enabling capability of the register operation.

DO DPn-1 DO Dn-1 DO Dn-1
4] n-1 o I | I | l |
precc— Data Data
“wiite > “wiite >
“enable

Figure 2.40 the register at several levels of abstractions — serial data entry

Similar to the parallel registers the serial daiyeregisters are having different abstract levels
from the left to right.
Registers support basically two operations

* read

o write

Write to a register

A parallel write operation begins when the datlesced onto the inputs of the register.
Following a delay to allow the data to settle o lthus, the write signal is asserted. For a serial
write operation, a write signal must accompany edatia bit that is entered. In the drawings
shown in Figure 2.41, the write signal is asselv@dwhich is typical. Following each write
operation, the contents of the register are chatmeeflect the new values of the input data.

Data X X Data ji K }‘< X)C
Wirite Write —m—_/_\\
Read Read

Farallel Write Serial Write

Figure 2.4 1 writing into a register
Read from a register
The read operation is executed as shown in Fig4iz Zhe read signal is issued; following
some delay, the data appears on the register olnpthis illustration, the read signal is shown

as asserted low.

1 ———
DEPT OF ECE, AGMRCET VARUR 33

EMBEDDED SYSTEM DESIGN (10EC74)

Data X X Data }{ }(X)(
S mam v/ N\
Read w

Serial Read
Parallel Read

Figure 2.42 Parallel read and serial read

Register View of a Microprocessor

Here let us examine the datapath and control anié Simple microprocessor at RTL level.
The datapath

Figure 2.43 depicts the architecture of the datapaid the memory interface for a simple
microprocessor at the register transfer level.

il
:
Program Counlar [raapath i
1
L1 :
1Y |
1
| T Ta— t
i L i
i [} ! E Marncry i
1B ¥
1 ¥ : i ‘E : mﬂﬁ@ i
Insiruction Aeglsher i B H
i I ; -.
P i]
1 b | F |
oy 0 8 Wirie - !
1
Ailhmetic ! ! Hsad oy !
| and Logical Linii o 5 |
Instnaction Decoder 1 : I
Fn-1 and - ;
1 Comral - t ;
H Fir) Paginm Goneral Purposs : i | arrorp Askdten Baagwbe I :
Pargisiors : : i
__ Do ; :
I
= ;

Figure 2.43 RTN Model for a Microprocessor Datapath and Memory Interface

The above figure shows the different registers urs@dmicroprocessor with memory interface.
Initially the program counter will point the addsesf the instructions to be fetched from
memory through memory address register. From thmangethe data is fetched and given to
the memory data register the same is given torsieuction register and instruction decoder
will decode to find the purpose of the instructaggain the memory is contacted for the required
data to execute the instructions. Finally the eikenus performed by the Arithmetic and Logic
unit and the temporary results are stored in timege purpose registers.

The control

1 ———
DEPT OF ECE, AGMRCET VARUR 34

EMBEDDED SYSTEM DESIGN (10EC74)

The control of the microprocessor datapath consisfisur fundamental operations defined as
the instruction cycle. These steps are identifiedrigure 2.44, and are further described

according to state diagram in 2.45.

Fetch Fetch instruction

Decode Decode current instruction

Execute Execute current instruction

Nexi Compule address of nexl instruction

Figure 2.44 Steps in the Instruction Cycle

Fetch
The fetch operation retrieves an instruction froemmory. That instruction is identified by its
address, which is the contents of the program esuRC. Thus, at the ISA level, the fetch

operation is written as

Exacute

Figure 2.45 The instruction cycle

MOVE IR, *PC;
Move the memory word identified by the address aimred in the program counter into the
instruction register The first step in the fetchegion places the contents of the program
counter (which identifies the address of the nestruction) into the Memory Address Register
(MAR). A Read command is issued to the memory, Wwhetrieves the instruction stored in
the addressed location and places it into the Mgrbata Register (MDR). The contents of
the MDR are then transferred to the Instructionifeg (IR). At the RTL level, the fetch

decomposes into the sequence of steps given imé=&j46.

1 ———
DEPT OF ECE, AGMRCET VARUR 35

EMBEDDED SYSTEM DESIGN (10EC74)

The second step in this sequence executes a REA&Matam from the specified memory
location. The underlying hardware will generate tkad control signal and manage the
underlying timing.

MAR+—PC: ff PC enabled out to bus, MAR captures value
MDOR. <— Memory[MAR]; /f contents of specified memory location placed into MDR
IR «— MDR, /# MDR enabled cut to bus, IR captures value

Figure 2.46 Components of the fetch Instruction

Decode

The decode step is performed when the op-code ifiellde instruction is extracted from the
instruction and decoded by the Instruction Decodéat information is forwarded to the
control logic, which will initiate the execute pimm of the instruction cycle.

Execute

Based on the value contained in the op-code ftkl control logic performs the sequence of
steps necessary to execute the instruction. Twmpbes are given in Figure 2.47. Store the
contents of a register in a named location in mgmddd the contents of a register to a piece

of data stored in memory and place the result btokmemory, but at a different location.

M S Instruction
“xPtr =y
I 1SA Level Instruction
ST "R1, R2;
/f RTL Level Instructions
MAR «— R1; i R1 enabled oul to bus, MAR captures value
MDR «<— Memory[MAR]; i cantents of specified memory locatian placed into MDR
R2 +— MDR; i MDR enabled out to bus, R2 captures value

A C Instruction
*zPir = x + “yPir;
H1SA Level Instruction
ADD *R3, R1, *R2;
/! RTL Level Iinstructions
A Assume that R2 and R3 already contain the desired addrasses in memory

TRD «— R1; M R1 enabled out 1o bus, TRO captures value
MAR < RZ; # R2 enabled out to bus, MAR captures value
MDR<«— Memory[MAR]; M contents of specified memory location placed into MDR
TR1+— TRO + MDR; fH MDR enabled out to bus, ALU adds TRD and MDR
f places result in TR1
MAR <— R3; !/ R3 enabled out to bus, MAR caplures value
MDR «— TR1; f# TR1 enabled out to bus, MDR caplures value

Memory[MAR] «— MDR; / contents of MDR placed into specified memory location

Figure 2.47 An Execute Sequence

1 ———
DEPT OF ECE, AGMRCET VARUR 36

EMBEDDED SYSTEM DESIGN (10EC74)

Next

The address of the next instruction to be execastdépendent on the type of instruction to be
executed and, potentially, on the state of the itimmdflags as modified by the recently
completed instruction. At the end of the day, mmedtice to algebraically adding a value to the
PC. For short jumps, the displacement may be aoedain one of the operand fields of the
instruction; for longer jJumps, the value may betaored in the memory location following the
instruction. Thus, at the ISA level, the severakians of the next operation are written as

ADD PC, offset;

Algebraically modifying the PC is best accomplistgdusing one of the arithmetic functions
in the ALU. The operation begins when the contagi¢ places the desired offset into the
ALU'’s temporary register. Next, the output of th€ B directed to the other ALU input. The
ADD instruction is executed, and the result is dento the PC. Placing a specific value into
the PC can be done directly by the control logicsithe target address is generally contained
in the instruction. At the RTL level, the next stgcomposes into the sequence of steps given
in Figure 2.48.

/I Assume the offset is contained in the instruction

TRO ¢— IR<n..m>; Il offset field of instruction enabled out to bus, TRO captures value
TR1 < TRO + PC; /I PC enabled out to bus, ALU adds TR0 and PC
PC < TR1 /I TR1 enabled out to bus, PC captures value

Figure 2.48 The Next Sequence

The Verilog program in Figure 2.49 implements aawdbural model of a portion of the
datapath and control for the simple CPU presentékeastart of this section. The number of
registers has been reduced, only two instructiomsnaplemented, and the address mode field
supports four different modes. Nonetheless, theitcure implements a working system

DEPT OF ECE, AGMRCET VARUR 37

EMBEDDED SYSTEM DESIGN (10EC74)

I/ The Computer - HalO
module hall (pc, ir, clock);

1/ deciare the VO and registers

nput clock:

output [31:0) pc:

output [31:0) o

reg [31:0) m [0:15]): /7 16 x 32 bit memory
reg [31:0) pc: /7 32 bit program counter
reg [31:0) acc: /7 32 bt accumulator

reg [31:0) L 1 32 bt instruction register
reg [31:0) fO:7) /7 8 32 bt general purpose registers
reg notDone: /7 flag 10 end program
integer i

// define op-codes

parameter acd = 8nO1; M/ 8 bt add op-code
parameter move = 8NhOoS: M/ 8 bit move op-code
parameter done = 8N /7 8 bit done op-code

parameter cir = 200
parameter ind = 201
parameter mm = 210
parameter pcr = 2D
I/ define registers
parameter rO = 32"N0:
parameter r1 = 32"N1:
parameter r2 = 32N2:
parameter r3 = 32N"3:
parameter r4 = 32N4;
parameter rS = 32N"S:
parameter r6 = 32N"6;
parameter ¢r7 = 3I2N"7:
/! initialize the system
initial // initialize the pc and the accumulator
begin
pc = O; /i pc<-0
acc = 0; /l acc <-0
notDone = "TRUE; // initialize notDone flag

// define the instruction rom
I/ enter some instructions into memory

m[0] = 'h05000803; // 10 <- Ox3

m[1] = 'h05001802; Jr1 <- Ox2

mI2] = 'h01001000; /il <-r1 +r0

m[3] = 'hFFFFFFFF; /i done - end of program

m[4] = 'h00000000;
m[5] = 'hO0000000;
m[6] = 'h00000000;
m[7] = 'h00000000;

ir = m [pcl; // fetch operation - get first instruction
end

1 ———
DEPT OF ECE, AGMRCET VARUR 38

EMBEDDED SYSTEM DESIGN (10EC74)

DEPT OF ECE, AGMRCET VARUR

EMBEDDED SYSTEM DESIGN (10EC74)

‘define TRUE 11

‘define FALSE 100

”

instruction format 32 bit word
31.24 op-code
23.22 address mode fiek! operand 1
21..12 operand 1
11.10 address mode field operand 0
9.0 operand 0

all registers are 32 baits

!

I/ Buid a test banch 1o test the design

module testBench;

wire [31:0) pc: # connect the pc

wire [31:0] L A W connect the ir

wire clock; # connect the clock

hai aComputer (pc ir, clock); # build an instance of the compuler

testit aTester(clock, pe, ir) ¥ build a lester

endmodule

I Test module

module testit(clock, pc, ir):

I/ declare the input and output variables

nput [31:0) pc. / program counter

nput [31:0) i # Instruction register

output clock; V system clock

reg clock: # system clock

parameter hafParnod = 1;

nitiad

clock = 0;

I manage the clock

always

begin

#(halfPeriod) clock = ~clock;

end

Il manage the display and look for changes

always @{posedge clock)

begin
Smonitor (Stime.,, "pc = %h \t ir = %h", pe, irk # record only changes
#(10"halfPeriod); # let clock cycle a couple of times
#(halfPerod). I needed 1o see END of a simutation
Sstop; # stop 5o user can ook at waveform
Sfinish; W exit
end

endmodule

Figure 2.49 the simple CPU

1 ———
DEPT OF ECE, AGMRCET VARUR 40

EMBEDDED SYSTEM DESIGN (10EC74)

The Hardware Side: Storage Elements and Finite-StatMachines

The hardware in the microprocessor is the digitalids, the digital circuits are classified into
two namely combinational and sequential logic Gtscu

In combinational logic circuits output dependstbe primary state only. Examples of such
circuits are adder, multiplexor, decoder and encode

In sequential logic circuit the output of the citcdepends upon the present input and past
outputs. Examples of such circuits are latch, litipf counters and registers further sequential
circuits are classified into synchronous sequerdral asynchronous sequential circuit. To
design such a complex systems we use finite statdime.

Finite State Machine (FSM) used to describe thebielr of digital circuits using finite no of
states.

The concepts of time and state

In combinational circuit ignoring delay output iusction of input and no time constraints.

In sequential circuits output depends on what titoek reaches the circuit?, what time we get
output?, what time input reaches the circuit. Hetigetime is the integrated behaviour of

sequential circuits.

State

In general state represents to the condition thamgsn, what they are like at a particular time?
In this context thestate represents output of a circuit there may be one or more states but
each state must be represented uniquely. To regréseoutput we use several variables this
set of variables is called state variables The stbthe circuit will change depends on the input

and state changes with respect to time is calleédweur of the system.

State Diagram

State diagram is graphical representation of behaviour of the circuit, it us very useful in
complex logic design. We show the transition betw@e states using a labelled directed line
or arrow called an arc (or edge in graph theoratnguage) as illustrated in Figure 2.50.
Because the line has a direction, the state diaggaeferred to as directed graph. The head

or point of thearrow identifies the final state, and the tail or backtw# arrow identifies the
initial state. Special arcs, such as the one latielhitial, reflect an external, overriding
asynchronous event, such as a reset, which plaeeystem into a designated state, here state

1 ———
DEPT OF ECE, AGMRCET VARUR 41

EMBEDDED SYSTEM DESIGN (10EC74)

a Because the graph can contain cycles, it iséugnalified as @&yclic graph. The label on

each identifies what caused the change and theigs)f system, if appropriate.

[inputs] /[outputs]
state b

state a

[inputs] / [outputs]

Figure 2.50 Transitions between States in a Digital
Memory Device
Example describe an evening’s entertainment. Draw statgrdm graphically to expresses the

same behaviour that is described textually in Fedubl.

enter room i
. enter boring event
If in state awake room

Input boring event \ asleep
Change to state asleep
else if state asleep

Input fall off chair
Change to state awake fall off chair

awake

Figure 2.51 Textual Description Figure 2.52 State diagram

Finite State Machine — A Theoretical Model
Here we discuss different abstraction levels off@@finite-state machines, the first view is as
shown in Figure 2.53 have no inputs other tharoaekcand have only primitive outputs (we
generally don’t show the clock). Such machineseferred to asutonomous clocks

As we move to more complex designs, we will introglinputs as well as more
sophisticated outputs. A high-level block diagramn & finite-state machine begins with the
diagram in Figure 2.54.
Theoutputs shown in the diagram may be the values of the s&iables (as they will be in
counting-type designs), combinations of 8tate variables, orcombinations of the state
variables and the inputs.Refining the level of detail the block diagram fbe state machine

appears as shown in Figure 2.55
I ——

DEPT OF ECE, AGMRCET VARUR 42

EMBEDDED SYSTEM DESIGN (10EC74)

Finite-State 6 F s
: utputs inite-State
Machine Inputs FEEhins Outputs

Figure 2.53 An Autonomous Clock . .)
figure 2.54 A High-Lewvel B D for a FSM

Finite-State
Machine

- State Variables

Inputs Cutputs

Figure 2.55 A High-Level Block Diagram for a Finiate Machine
We see first that the signals out of the finite¢estaachine decompose into two sets: state
variables and outputs. Observe thatdtade variables are fed back as inputto the system.
The diagram illustrates the essence of the stresfgtte machine. It has the ability to recognize
the state that it is in and then to react baseti@nalues of the state variables and (potentially)
to the inputs to the system. Ttecision as towhich state to go to nexis determined from
the current input and the state that the machineri®ntly in. The present state of a finite-state
machine inherently encodes the history of the palthn to get there.

If we continue increasing the level of detalil ie timodel, we now include trstorage
elementscomprising the machine and the combinational Idgat implements the output
functionality and the input equations to the steratgments. The block diagram now becomes
that in Figure 2.56.

The model has n inputs, m outputs, and p statablas. A memory device is associated
with each state variable, and each state variabéssociated with a memory device. At this
point no particular type of memory device is spedif

1 ———
DEPT OF ECE, AGMRCET VARUR 43

EMBEDDED SYSTEM DESIGN (10EC74)

xcl T’ * Zn
1 Combinaticonal *
x ., t Leogic Fiy
——————
(1) R)
_-,
Memory
* Device
1 I
i i
1]]
1 i
* Memory
N, (1) Device Va0

Figure 2.56 A High-Level Block Diagram for a Finite
State Machine

We specify the set of variables Xi to represertriinputs to the system; Zj to represent the
m outputs from the system; and Yk to represenptirdernal state variables. We define our
finite-state machine as a quintuple (function @éji

M=(l, O, S\,6)

| - Finite nonempty set or vector of inputs

O - Finite nonempty set or vector of outputs

S - Finite nonempty set or vector of states

6 - Mappingl xS -> S

A 1 - Mappingl x S -> O - Mealy Machine

A 2 - Mappings - 0 ->Moore Machine

There are two types of Mealy and Moore machines.

Mealy machine A 1 The output is a function of the present statkiaputs

Moore machine & 2 The output function of the present state only.

Extensions to the basic diagram, such as we fiddhidware/software co-design tools
or the Unified Modelling Language (UML) state clsagupport a rich set of system modelling

capabilities.

1 ———
DEPT OF ECE, AGMRCET VARUR 44

