

DEPT OF ECE, AGMRCET VARUR 1

EMBEDDED SYSTEM DESIGN (10EC74)

UNIT 2

The Hardware Side: An Introduction, The Core Level, Representing Information,

Understanding Numbers, Addresses, Instructions, Registers-A First Look, Embedded

Systems-An Instruction Set View, Embedded Systems-A Register View, Register View of a

Microprocessor The Hardware Side: Storage Elements and Finite-State Machines (2 hour) The

concepts of State and Time, The State Diagram, Finite State Machines- A Theoretical Model.

--

An Introduction

As we know the essential elements for an embedded system are hardware, software and

firmware and each will bring out strengths and weaknesses of the embedded system. Here we

study about the high level structure and components of the embedded systems are hardware

and computing core of an embedded application. That core is usually manifest as a

microprocessor, microcomputer, and microcontroller.

In today’s high-tech and changing world, we can put together a working hierarchy of

hardware components. At the top, we find VLSI (Very Large-Scale Integrated) circuits

comprising significant pieces of functionality: microprocessors, microcontrollers, FPGAs

(Field Programmable Gate Arrays), (C)PLDs ((Complex) Programmable Logic Devices), and

ASICs (Application Specific Integrated Circuits). Perhaps we could include memories as well.

At the next level down, we find MSI (Medium-Scale Integrated) circuits, which bring smaller,

yet complete, pieces of functionality. Going down one more step, we have SSI (Small-Scale

Integrated) circuits. At the very bottom, we have the electrical signals we use to represent our

data and control information and the other signals that come into our system as noise or other

unwanted signals.

Throughout our studies on the hardware side, we will utilize the Verilog modelling language

to enable us to test, confirm, and demonstrate the viability of our designs prior to committing

to hardware. The language will enable us to work at various levels of detail at the top or

behavioral level, we can confirm high-level functionality , and at the lower level or

structural level, we can confirm details of timing, scheduling, and control. Facility at both

levels is essential today.

Our study of the hardware side of embedded systems begins with a high-level view of the

computing core of the system. We will expand and refine that view to include a detailed

discussion of the hardware (and its interaction with the software) both inside and outside of

that core. Figure 2.1 illustrates the sequence we follow.

DEPT OF ECE, AGMRCET VARUR 2

EMBEDDED SYSTEM DESIGN (10EC74)

The computing core is the central hardware component in any modern embedded

application. It often appears as a microprocessor, microcomputer, or microcontroller.

Occasionally, it may appear as a custom-designed VLSI circuit or FPGA. It interacts with and

utilizes the remaining components of the system to implement the required application. Such

actions are under the control of a set of software and firmware instructions. Information

and data come into the system from the surrounding environment and from the application.

These data are processed according to the software instructions into signals that are sent back

out of the system to the application. The software and firmware instructions, as well as signals

coming into or going out of the system, are stored in memory.

The Core Level

A model comprising four major functional blocks (input, output, memory, and datapath and

control) depicting the embedded hardware core and the high level signal flow. These are

illustrated in Figure 2.2.

DEPT OF ECE, AGMRCET VARUR 3

EMBEDDED SYSTEM DESIGN (10EC74)

Figure 2.2 Four Major blocks of an embedded hardware, the memory block serves to hold

collections of program instructions that we call software and firmware as well as to provide

short-term storage for input data, output data, and intermediate results of computations. Data

as well as other kinds of signals come into the system from the external world through the input

block. Once inside of the system, they may be directed to any number of destinations.

The output block provides the means to send data or other signals back to the outside world.

The datapath and control block, more commonly known as the CPU or central processing

unit, coordinates the activities of the system as well as performs computations and data

manipulation operations necessary to executing the application.

For the execution, the CPU fetches instructions from memory, interprets them, and then

performs the task indicated by the instruction. In doing so, it may retrieve additional data from

memory or from the input block. Often, it will also produce information that is sent out of the

system.

We move signals into, out of, or throughout the system on paths called busses. In their most

common implementation, busses are simply collections of wires that are carrying related

electrical signals from one place to another.. Signals flowing on the wires making up the busses

are classified into three major categories: address, data and control.

• The data are the key signals that are being moved around;

• The address signals identify where the data is coming from and where it is going to.

• The control signals specify and coordinate how the data is transported.

DEPT OF ECE, AGMRCET VARUR 4

EMBEDDED SYSTEM DESIGN (10EC74)

The width of a bus, that is, the number of signals or bits that it can carry simultaneously,

provides an indirect measure of how quickly information can be moved. Transferring 64

bits of data on a bus that is 32 bits wide requires two transfers to move the data. In contrast, a

bus that is only 8 bits wide will require eight transfers. Figure 2.3 illustrates moving such a set

of data over an 8-bit bus from a source module to a destination module. In the model, each

transfer requires one time unit; the process begins at time t0 and completes at time t7. Time

increases to the left.

The source of the transfer is the array of eight bit values; the destination is perhaps a display.

In Figure 2.4, we refine the high-level functional diagram to illustrate a typical bus

configuration comprising the address, data, and control lines.

None of the busses is required to have the same number of lines. To avoid cluttering a drawing

by including all of the signals or conducting paths that make up a bus, we will often label the

bus width using the annotation / bus width as illustrated in Figure 2.5 In this example, the

address bus is shown to have 18 signals, the data bus 16, and the control bus 7.

DEPT OF ECE, AGMRCET VARUR 5

EMBEDDED SYSTEM DESIGN (10EC74)

The microprocessor

A microprocessor is a device that will receive inputs and process the data and gives the

output. It is often simply referred to as a CPU or datapath. Microprocessors differ in

complexity, power consumption, and cost. Today microprocessors range from devices with

only a few thousand transistors at cost of a dollar or less to units with 5 to 10 million transistors

at a cost of several thousand dollars.

The figure 2.6 shows the microprocessor based embedded system, it clearly shows that the

microprocessor solely cannot act as an embedded system because it needs a support from

other peripherals so different blocks such as ROM memory to store the firmware, RAM

memory to store the data, Real Time Clock to strictly follow the time constraints and input and

output peripherals.

DEPT OF ECE, AGMRCET VARUR 6

EMBEDDED SYSTEM DESIGN (10EC74)

The microcomputer

The microcomputer is a complete computer system that uses a microprocessor as a CPU,

typically a microcomputer will also utilize numerous other large scale integrated circuits to

provide necessary functionality. The complexity of the microcomputer varies from simple units

tha ate implemented on a chip along with the small amount of on-chip memory and elementary

I/O system to the complex that will have a microprocessor with a wide array of powerful

peripheral circuitry.

The Microcontroller

The block diagram of the microcontroller based embedded system is shown in figure 2.7 below.

Basically microcontroller it receives the input from the external world and does some process

on the data and the output of the microcontroller is used to control some circuitry which is

connected in the periphery of the system.

The microcontroller combines microprocessor and rich collection of peripherals such as

timers, data converters, serial and parallel communications, a direct memory access into a

single integrated circuit. If the designer feels that the inbuilt memory is not sufficient he can

add an external memory to satisfy the requirements.

DEPT OF ECE, AGMRCET VARUR 7

EMBEDDED SYSTEM DESIGN (10EC74)

The Digital Signal Processor

It is a single purpose microprocessor most widely used in embedded applications. The DSP

is typically used in conjunction with a general purpose processor to perform specialized tasks

such as image, speech, audio, or video processing and its block diagram is shown in figure 2.8.

The input to the DSP basically and analog signal from the external world is received through

input block and it will converted into digital signal using analog to digital signal for the

internal use. After the signal processing the digital signal will be converted into analog signal

using a digital to analog converter and that signal will be given to the external world.

One of the major strengths of the DSP is its ability to perform basic arithmetic computations

such as multiply, add and shift at the rate of millions of operations per second.

To support high speed arithmetic, multiply-accumulate unit which will perform multiply and

add to the accumulator is performed in a single operation, which is useful in matrix operations

is incorporated in DSP.

To facilitate high speed signal processing, the DSP device is architecture as a Harvard rather

than the Von Neumann, and has multiple computational units, large number of registers, and

wide high bandwidth data busses.

DEPT OF ECE, AGMRCET VARUR 8

EMBEDDED SYSTEM DESIGN (10EC74)

Representing information

A data is the very important phenomenon in the embedded systems because throughout the

system whether it is a processing, or controlling or manipulation these will be done only on

data, in addition to this the data only act as input and output to the systems.

Let us study about how we can represent these kinds of information and with such

representation, what limitations we will encounter.

Word Size

The computing engine is classified based on the size of the data it is handling; this is commonly

known as word size. Generally a word size in a computing engine refers to the size of an integer.

We will assume for the remainder of this study that we are working with a microprocessor

that is using a word size of 32 bits. Such a device is called as 32-bit machine and it has 4

bytes of data.

The following representations can be used for representing information as shown in figure 2.9

below.

In the above shown figure 2.9 the top structure shows the big endian format, and the below

structure show the little endian format, different microprocessors, operating systems, and

networks interpret such words in different ways.

In this subject we will assume a big endian interpretation unless it is mentioned.

The interpretation of the order of the bits is just that, an interpretation . There is nothing

inherent in the construction of a number that dictates which end has the MSB or LSB.

Understanding Numbers

DEPT OF ECE, AGMRCET VARUR 9

EMBEDDED SYSTEM DESIGN (10EC74)

In the last section we discussed about the data called word size, here we will study the effects

of finite word size on resolution, accuracy, errors and the propagation of errors in different

operations.

In an embedded system, the integers and floating point numbers are normally represented as

binary values and are stored either in memory or in registers. The expressive power of any

number is dependent on the number of bits in the number.

Resolution

The following table shows if the four bit word is used to hold a number, what is it corresponding

expressive power. If the bits are interpreted as expressing an unsigned integer, the integer may

range from 0 to 15; the resolution is 20.

Interpreting the number with two bits devoted to the fractional component provides two digits

of resolution. That is we can express and resolve a binary number to 2-2.

Example : to represent the number 2.3 using a 4-bit binary number with 2 bits of resolution,

the best that one can write is either (10.10) 2.5 or (10.01) 2.25. The error in the expression will

be either +0.2 or -0.05.

Because word size limits one’s ability to express number, eventually we are going to have to

either round or truncate a number inorder to be able to store it in internal memory. Among this

which provides the greater accuracy, and which will give the best representation of a measured

value?

Let’s consider a real number N, following either truncation or rounding of the original number

to fit the microprocessor’s word size, the number will have a fractional component of n bits.

The value of the LSB is 2-n. whether we round or truncate, the resulting number will have an

error. The error following the operation is computed as

DEPT OF ECE, AGMRCET VARUR 10

EMBEDDED SYSTEM DESIGN (10EC74)

The range of the errors of the truncation and rounding is as follows

Propagation of errors

To represent the data we use a big endian or little endian methods and the data should be

represented in the available bits. If it does not fits in a available bits then we do truncation and

rounding but both results will have an error and this error will propagate throughout the

embedded system.

ADDITION

Observe that the resulting error is the algebraic sum of the original errors.

This error is not only propagating through the basic mathematic calculations. The below

example shows that the electronic circuit will also propagate the error.

Consider the conventional measuring instrument and its measurement details.

As we know the power can be calculated in three ways

DEPT OF ECE, AGMRCET VARUR 11

EMBEDDED SYSTEM DESIGN (10EC74)

The above three results not only yields different answers but differing in magnitude. So the

designer of embedded system should know the cause of the error, rectification of the error

and impact of the error as well. If the errors are taken care carefully the safety of the

embedded system will be affected.

Addresses

The data in an embedded system will be stored in the memory; memory is digital hardware and

is used to store multiple bits. These data can be accessed by using addresses. In microprocessor

addresses has unique binary pattern. The number of addresses in a memory depends on the

memory locations. The microprocessor does not support negative addresses.

For a word size of 32 bits, the addresses will range (in hex) from 00000000 to FFFFFFFF.

Thus, with 32 bits, we have up to 4,294,967,296 unique combinations and therefore that same

number of possible addresses.

DEPT OF ECE, AGMRCET VARUR 12

EMBEDDED SYSTEM DESIGN (10EC74)

As data, the addresses also can be represented by using big endian and little endian methods.

The memory is not only used to store the data, it is also used to store the address of the

required data the following examples shows the same.

In the above code we are interested in storing number 10 in the memory location 3000 using

pointer function.

When this program executes system will allocate some address 5000 to store the address

3000 of the data. Where the number 10 has to be stored.

Figure 2.10: using the value of one variable to hold the address of another variable

Instructions

Instructions are used to direct the hardware of the microprocessor to perform a series of

actions, such as Arithmetic and logic, assignment, reading the data, moving the data in and

through the microprocessor.

An instruction consists of operator and each operator requires entities to operate on called

operands. The no of instructions that an instruction operate on at any time is called arity of

the operation.

Look at the following example code

X= Y+Z;

Here we have two operations, the addition operation and the assignment operation. First, the

addition operation: that operation is performed on two operands, y and z. The addition operator

is said to be a binary operator—its arity is two. Now, the assignment operator: the operation is

DEPT OF ECE, AGMRCET VARUR 13

EMBEDDED SYSTEM DESIGN (10EC74)

performed by giving x the value returned by the addition operation. It also is performed on two

operands, the result of the addition and the operand x—its arity is two as well.

In C and C++, both operators are referred to as binary operators. Operators taking only a single

operand have an arity of one and are referred to as unary operators. With one exception, all

operators in C and C++ are either unary or binary.

Let’s look at several common C or C++ instructions

1. x = y;

This is an assignment operation, here the value of y is assigned to the target x. to do this we

require two operands, thus this operator is called binary operator. Such instruction is called as

two operand or two address instruction.

2. z= x+y;

In this instruction two operations are taking place, addition and assignment. Both are binary. If

we ignore the transient intermediate result, we see that for we have three operands, x and y are

sources and z is a destination. Such an instruction is designated a three-operand or three-address

instruction

3. x=x+y;

If we ignore the transient intermediate result as before, we see that for this code we have two

operands, x and y are sources and x is also a destination. Such an instruction is designated a

two-operand or two-address instruction.

4. ++x or x++

The operation of the above code is pre increment and post increment, the operand required here

is one. Such an instruction is designated as a one-operand or one-address instruction.

The previous code fragments have illustrated three classes of instructions we might find in

the system software or firmware. These classes are the one, two, or three operand instruction.

Let’s now see how we can interpret the bits in a 32-bit word to reflect such instructions. Any

such interpretation will have to support the ability to express both operands and operations as

seen in Figure 2.11

DEPT OF ECE, AGMRCET VARUR 14

EMBEDDED SYSTEM DESIGN (10EC74)

Register- A first look

The instruction which is used to operate microprocessor is stored in a memory. If the word size

of the operand is more it cannot be stored in a memory then the alternative is to store the

operand in the registers collection of short term memory which is large enough to hold an

operands. In prior to execution the data has to be moved in out of memory during fetch and

decode operations of the microprocessor.

Some microprocessors employ few register and this processor is called complex instruction set

computer (CISC). Microprocessors that has large number of register is called reduced

instruction set computer (RISC).

Let’s assume a hypothetical microprocessor with 144 instructions. To permit each instruction

to be uniquely identified, we will have to specify that the op-code contains 8 bits since 27 <

144 < 28. Let’s further assume that the microprocessor is designed to include 256 registers. To

permit each register to be uniquely identified will also require 8 bits.

Our earlier diagram for the various instruction formats can now be modified to reflect the new

interpretation of the operand fields as illustrated in Figure 2.12.

DEPT OF ECE, AGMRCET VARUR 15

EMBEDDED SYSTEM DESIGN (10EC74)

The Figure 2.13 summarizes the big endian interpretations of a word in a microprocessor

system. The little endian interpretations follow naturally.

DEPT OF ECE, AGMRCET VARUR 16

EMBEDDED SYSTEM DESIGN (10EC74)

Embedded systems – an instruction set view

The computation engine can be used by developing firmware and executing the same. This

firmware can be developed using high level language, assembly language and

combination of assembly and high level language.

A firmware using assembly language can be developed with reference to the instruction set that

is provided with the microprocessor. An assembler is a tool that converts assembly language

to machine language in which the firmware is developed with opcodes.

Instruction set- Instruction types

The instruction set specifies the basic operations supported by the machine. The objectives of

the operations are

• To transfer or store data

• To operate on data

• To make decisions on the data values

The instructions in a computation engine are classified into

• Data transfer,

• Flow of control,

• Arithmetic and Logic.

Data Transfer Instructions

The data transfer instructions are responsible for moving data inside the processor, bringing

the data in, and sending data out. These instructions consist of source and destination. The

source and destination may be a register, memory, or an input or output port. The operations

involved in data transfer instructions are illustrated below.

DEPT OF ECE, AGMRCET VARUR 17

EMBEDDED SYSTEM DESIGN (10EC74)

Some of the common instructions used in data transfers are listed below.

Addressing modes

• Method to specify the location of data

A portion of each operand field is designated as a specification to the hardware as to how to

interpret or use the information in the remaining bits of the associated address field. That

specification is called the address mode for the operand.

The address that is ultimately used to select the operand is called the effective address.

Addressing modes are included in an instruction in order to offer the designer greater flexibility

in accessing data and controlling the flow of the program as it executes. However, some of the

address variations can impact flow through a program as well as the execution time for

individual instructions. Each is identified by a unique binary bit pattern that is interpreted. The

drawings in Figure 1.18 refine our earlier expression of each instruction format to reflect the

inclusion of the address mode information.

DEPT OF ECE, AGMRCET VARUR 18

EMBEDDED SYSTEM DESIGN (10EC74)

Some of the commonly used addressing modes include

• Immediate

• Direct and indirect

• Register Direct and Register indirect

• Indexed

• Program Counter Relative

Immediate Mode

An immediate mode instruction uses one of the operand fields to hold the value of the operand

rather than a reference to it, as shown in Figure 2.17.

Figure 2.17: Immediate mode instruction formats

DEPT OF ECE, AGMRCET VARUR 19

EMBEDDED SYSTEM DESIGN (10EC74)

The major advantage of such an instruction is that the number of memory accesses is reduced.

Fetching the instruction retrieves the operand at the same time; there is no need for an additional

access. Such a scheme works well if the value of the immediate operand is small. The

immediate instruction might appear as a one- or two-operand instruction as illustrated in Figure

2.17.

The one-operand version contains only the immediate value. Without an explicit destination,

the target must be implied. Typically, that is the accumulator in the arithmetic and logic unit

(ALU).

The two-operand version illustrates the operation at both the C or C++ level and the assembly

language level. In the former case, the variable y is declared and initialized to the hex value

0xB. Such an expression is compiled into an assembly language statement of the kind shown.

On some processors, the instruction mnemonic designates that the operation is to use an

immediate operand. In such cases, the instruction may be written as illustrated in Figure 2.18.

Figure 2.18 Variations on the immediate mode instruction

Direct and Indirect Modes

When using the direct and indirect addressing modes, we are working with operand ddresses

rather than operand values. In both cases, the first level of address information is contained in

the instruction. The difference between the two modes is that, in the direct mode, the contents

of the operand field in the instruction are the address of the desired operand, whereas in the

indirect case, the field contains the address of the address of the operand.

With either mode, the major disadvantage is the additional memory accesses necessary to

retrieve an operand

In the figure 2.19 two different data transfer operations are shown.

DEPT OF ECE, AGMRCET VARUR 20

EMBEDDED SYSTEM DESIGN (10EC74)

For the direct operation, at the C/C++ level, the value pointed to by one variable, yPtr, is

assigned to a second variable pointed to by xPtr. At the assembly language level, the MOVE

instruction directs that the contents referenced by operand1 be copied to the location referenced

by operand0.

For the indirect operation, at the C/C++ level, the value of one variable, stored in memory and

pointed to by the pointer variable yPtrPtr, is assigned to a second variable pointed to by a

second pointer variable, xPtrPtr. At the assembly language level, the MOVE instruction now

directs that the contents of one memory location serve as the address in memory of the operand

that is to be assigned to the location in memory identified by the second operand.

The double ** symbols preceding the operands in the indirect access mode indicate that two

levels of indirection are necessary to reach the final operand in memory

Register Direct and Register indirect Modes

In the direct addressing mode the register contains the value of an operand. In the indirect

addressing the register contains the address of an operand. The register indirect allows us

to use the pointer functions in high level language.

DEPT OF ECE, AGMRCET VARUR 21

EMBEDDED SYSTEM DESIGN (10EC74)

In figure 2.20 two different data transfer operations are shown. For the register direct operation,

at the C/C++ level, the value of one variable, y, is assigned to a second variable, x. At the

assembly language level, we assume that the values for x and y have previously been stored in

registers R2 and R3, respectively. The MOVE instruction directs that the contents of R3 be

copied to R2.

For the register indirect operation, at the C/C++ level, the value of one variable, stored in

memory and pointed to by the pointer variable yPtr, is assigned to a second variable, x. At the

assembly language level, once again we assume that the values for x and yPtr have been

DEPT OF ECE, AGMRCET VARUR 22

EMBEDDED SYSTEM DESIGN (10EC74)

previously stored in registers R2 and R3, respectively. The MOVE instruction now directs that

the contents of R3 serve as an address into memory; the value of the variable at that address is

to be retrieved and to be copied into R2.

The * preceding the second operand in the indirect instruction indicates that the assembler is

to set the indirect addressing mode for the instruction. The major disadvantage of indirect

addressing is that an additional memory access is necessary to retrieve the operand’s value. In

contrast, when utilizing direct addressing, the value of the operand is found in the register.

Indexed Mode

The indexed or displacement addressing mode is used to access container type data

structures such as arrays. The effective address is computed as the sum of a base address

and the contents of the indexing register.

Note that during execution neither the base address nor the index values are changed.

In the figure 2.21, starting at the C/C++ level, we have an array variable named y and an integer

variable x. The variable x is to be assigned the value contained in the fourth element of the

array.

At the assembler level, the C/C++ fragment gets translated into a three-operand instruction.

The base register, R2, will hold the starting address of the container in this case, the address of

the 0th element of the array named y. The value of the variable y contains the address of the

variable Data0, the start of the array. Register R1 will serve as the index register—that is,

DEPT OF ECE, AGMRCET VARUR 23

EMBEDDED SYSTEM DESIGN (10EC74)

provide the offset. At the assembly level, we assume that the register R1 has already been

initialized to the value 3, the offset into the container.

When the instruction is executed, the contents of R1 are added to the contents of R2, giving an

address in memory. The value of the data stored in memory at the computed address is retrieved

and written into register R3.

The major disadvantage of indexed addressing is the time burden associated with computing

the address of the operand and then retrieving the value from memory. Indexing adds a greater

burden to system performance than does indirect addressing.

Program counter relative mode

Program counter contains the address of the next instruction to be executed. The program

counter relative mode is similar to the indexed addressing mode with few important

differences.

• The value in the program counter serves as the base address.

• The program counter is assigned the value of the computed effective address.

• The offset that is added to the program counter is a signed number.

Thus, the PC contents following the addition of the offset may refer to an address that is higher

(the offset was positive) or lower (the offset was negative) than the original value and its

mechanism is shown in figure below.

DEPT OF ECE, AGMRCET VARUR 24

EMBEDDED SYSTEM DESIGN (10EC74)

For this instruction, operand0 is serving as the index register and is holding a value that has

already been stored in it. The effective address is computed by adding the contents of the

register identified by operand0 (R1 in this case) to the contents of the program counter. The

program counter contents are then updated to the new value and now refer to the instruction at

the computed address.

In the figure 2.22. The C/C++ code fragment illustrates a simple for loop. Following the

execution of the body of the loop, the flow must move back to the top of the loop and test the

loop variable once again. A negative offset would have to be added to the contents of the PC

to effect that movement.

The disadvantage of the PC relative mode is there can be potential degradation of system

performance.

Execution flow

The execution flow or control flow of the each instruction is

• sequential

• branch

• loop

• procedure or function call

DEPT OF ECE, AGMRCET VARUR 25

EMBEDDED SYSTEM DESIGN (10EC74)

Sequential flow

Sequential control flow describes the fundamental movement through a program. Each

instruction contained in the program is executed in sequence, one after another. In the figure

2.23 the sequential flow is shown for both C/C++ and assembler.

Figure 2.23 Sequential Flow

Branch

A branching construct terminates a sequential flow of control with a decision point. At such

a point, one of several alternate paths for continued execution is taken based on the outcome

of a test on some condition. Graphically, such a construct is seen in Figure 2.24.

Figure 2.24 the branch construct

The branch construct is used to implement an, if else, switch, or case statement. The branch

may be executed unconditionally, in which case the contents of the PC are replaced by the

effective address specified by the operand. Alternately, the branch may be taken conditionally

based on the side effects of operations performed on data or on several different kinds of

comparisons between two variables such as equality, a greater than or less than relationship, a

carry from an arithmetic operation, or a variable being equal to or not equal to zero.

The conditional information is temporarily held as a collection of bits in a flag register or

condition code register. The state of each bit in the register is evaluated and potentially changed

DEPT OF ECE, AGMRCET VARUR 26

EMBEDDED SYSTEM DESIGN (10EC74)

following the execution of every instruction. Some of the typical conditional codes are listed

in the figure 2.25.

Some of the typical branching instructions are listed in the figure 2.26

If-else construct

In the C code in Figure 2.27

The two variables are compared. If they are equal, one arithmetic operation is performed;

otherwise a second one is executed. The code fragment in Figure 1.32 illustrates the construct

in assembler. We assume that the variables a–e have been placed into registers R1–R5. The

compiler will create labels $1 and $2 if the original source was written in a high level language

or by the designer if the original source was assembler code.

DEPT OF ECE, AGMRCET VARUR 27

EMBEDDED SYSTEM DESIGN (10EC74)

Loop

The loop construct permits the designer to repeatedly execute a set of instructions either

forever or until some condition is met. As Figure 2.28 illustrates, the decision to evaluate the

body of the loop can be made before the loop is entered (entry condition loop) or after the body

of the loop is evaluated (exit condition loop). In the former case, the code may not be executed,

whereas in the latter, the code is executed at least once. The loop type of construct is seen in

the do, repeat, while, or for statements.

Figure 2.28 the looping construct

The following C/C++ and assembler code fragments in Figure 2.29 illustrate a while loop

construct. The body of the loop is continually evaluated as long as the loop variable is less than

a specified value. This code fragment implements an entry condition loop. Assume that the

variables myVar and index have been placed in R2 and R3, respectively.

Stack

The stack is a data structure that occupies an area in memory. It has finite size and supports

several operations. Its structure is similar to an array except that, unlike an array, data can be

entered or removed at only one location called the top. The top of the stack is equivalent to the

0th index in an array. When a new piece of data is entered, everything below is pushed down.

DEPT OF ECE, AGMRCET VARUR 28

EMBEDDED SYSTEM DESIGN (10EC74)

Figure 2.30 illustrates a model for the operations for several pieces of data. Data entry is called

a push and data removal is called a pop. In reality, such a model is impractical because of

the time burden in moving every piece of data each time a new entry is made. A more practical

implementation adds or removes data at the open end of the structure.

Figure 2.31: Managing the stack pointer

The memory address reflecting the current top of the stack is remembered and modified after

each addition or removal. Such an address is called a stack pointer. Figure 2.31presents a

modified version of the previous diagram and illustrates how the stack pointer is properly

managed.

Push

The push operation puts something onto the top of the stack where it is held for later use.

Mechanically, the push operation increments the address that is held by the stack pointer to

refer to the next empty spot (the new top of the stack) and then writes the data to be stored into

the address in memory designated by that address. As we see in Figure 2.31, for ease of

implementation, the address contained in the stack pointer is typically incremented from a

lower memory address to higher memory address.

Pop

The pop operation takes something off the top of the stack by first retrieving the value in the

memory location designated by the stack pointer and then decrementing the address that is held

DEPT OF ECE, AGMRCET VARUR 29

EMBEDDED SYSTEM DESIGN (10EC74)

by the stack pointer to refer to the next lower address (the new top of the stack). The retrieved

value is returned as the result of the pop operation.

Procedure or Function call

The procedure or function is basically a subroutine in high level language. When the function

is invoked from the main program, it suspend the execution of main program and change the

control of execution to the subroutines and starts executing the program in this context and

return to the main program and resume its execution. This process is illustrated in the figure

2.32.

The process involving in the function and procedure call is. From a high-level point of view,

code execution proceeds in a sequential manner until the function call is encountered. Flow of

control switches to the function, the code comprising the function body is executed, and flow

returns to the original context as seen in Figure 2.33.

Arithmetic and Logic

Arithmetic and logical operations are essential elements in affecting what the processor is to

do. Such operations are executed by any of several hardware components comprising the ALU

DEPT OF ECE, AGMRCET VARUR 30

EMBEDDED SYSTEM DESIGN (10EC74)

(arithmetic and logic unit). Figure 2.34 presents a block diagram for a possible functional ALU

architecture.

Data is brought into the ALU and held in local registers. The op-code is decoded, the

appropriate operation is performed on the selected operand(s), and the result is placed in

another local register.

Arithmetic

Typically, the processor will support the four basic arithmetic functions: add, subtract,

multiply, and divide. Simpler processors will only implement the first two, relegating the last

two to a software implementation by the designer. The add and subtraction operations maybe

supported in two versions, with and without carry and borrow.

The last two versions are intended to support double-precision operations. Such an

operation is performed in two steps: the first computation holds any carry (borrow) and then

utilizes that value as a carry in (borrow in) to the second step. Most such operations are

implemented to support integer-only computations. If floating point mathematics is supported,

a separate floating point hardware unit may be included. In addition to the four basic functions,

the processor may also implement hardware increment and decrement operations.

The typical arithmetic instructions supported by microprocessor is listed in figure 2.35

DEPT OF ECE, AGMRCET VARUR 31

EMBEDDED SYSTEM DESIGN (10EC74)

Logical operations
Logical operations perform traditional binary operations on collections of bits or words.

Such operations are particularly useful in embedded applications where bit manipulation is

common. Such operations are discussed in detail in our studies of the software side of

embedded systems. Typical operations included in the set of logical instructions are illustrated

in Figure 2.36

Shift operations

Shift operations typically perform several different kinds of shifts on collections of

bits or words. The major differences concern how the boundary values on either side of

the shift are managed. Typically, three kinds of shift are supported: logical, arithmetic, and

rotate. Any of the shifts may be implemented as a shift to the left or to the right.

A logical shift enters a 0 into the position emptied by the shift; the bit on the end is

discarded. An arithmetic shift to the right propagates (and preserves) the sign bit into the

vacated position; a shift to the left enters 0’s on the right-hand side and overwrites the sign bit.

The rotate shift circulates the end bit into the vacated bit position on the right- or left-hand side

based on a shift to the left or to the right.

Typical shift operations supported by a computation device are listed in the figure 2.37.

DEPT OF ECE, AGMRCET VARUR 32

EMBEDDED SYSTEM DESIGN (10EC74)

Embedded Systems – A register view

As we know the instruction sets are used to operate the microprocessor hardware. The

microprocessor hardware consists of control and data path blocks as shown in figure 2.38.

 In this figure the data path is responsible for performing required operations in the

microprocessor, it consists of different types of registers to store the value temporarily. The

control unit control and manage the operations

Figure 2.38 a control and data path block diagram

The Basic Register
A register is a sequential digital circuit which is capable of storing single or multiple

bits. Here let’s take different abstract view of a register shown in figure 2.39 and 2.40.

DEPT OF ECE, AGMRCET VARUR 33

EMBEDDED SYSTEM DESIGN (10EC74)

From the left the first diagram gives the high level abstraction as the size of the register, then

the second diagram shows the no of inputs and outputs to the register, the third digram includes

two active low inputs to write into and read from registers. The last diagram illustrates the

enabling capability of the register operation.

Similar to the parallel registers the serial data entry registers are having different abstract levels
from the left to right.
Registers support basically two operations

• read
• write

Write to a register

A parallel write operation begins when the data is placed onto the inputs of the register.
Following a delay to allow the data to settle on the bus, the write signal is asserted. For a serial
write operation, a write signal must accompany each data bit that is entered. In the drawings
shown in Figure 2.41, the write signal is asserted low which is typical. Following each write
operation, the contents of the register are changed to reflect the new values of the input data.

Read from a register

The read operation is executed as shown in Figure 2.42. The read signal is issued; following

some delay, the data appears on the register output. In this illustration, the read signal is shown

as asserted low.

DEPT OF ECE, AGMRCET VARUR 34

EMBEDDED SYSTEM DESIGN (10EC74)

Register View of a Microprocessor

Here let us examine the datapath and control unit for a simple microprocessor at RTL level.

The datapath

Figure 2.43 depicts the architecture of the datapath and the memory interface for a simple

microprocessor at the register transfer level.

The above figure shows the different registers used in a microprocessor with memory interface.

Initially the program counter will point the address of the instructions to be fetched from

memory through memory address register. From the memory the data is fetched and given to

the memory data register the same is given to the instruction register and instruction decoder

will decode to find the purpose of the instruction again the memory is contacted for the required

data to execute the instructions. Finally the execution is performed by the Arithmetic and Logic

unit and the temporary results are stored in the general purpose registers.

The control

DEPT OF ECE, AGMRCET VARUR 35

EMBEDDED SYSTEM DESIGN (10EC74)

The control of the microprocessor datapath consists of four fundamental operations defined as

the instruction cycle. These steps are identified in Figure 2.44, and are further described

according to state diagram in 2.45.

Fetch

The fetch operation retrieves an instruction from memory. That instruction is identified by its

address, which is the contents of the program counter, PC. Thus, at the ISA level, the fetch

operation is written as

Figure 2.45 The instruction cycle

MOVE IR, *PC;

Move the memory word identified by the address contained in the program counter into the

instruction register The first step in the fetch operation places the contents of the program

counter (which identifies the address of the next instruction) into the Memory Address Register

(MAR). A Read command is issued to the memory, which retrieves the instruction stored in

the addressed location and places it into the Memory Data Register (MDR). The contents of

the MDR are then transferred to the Instruction Register (IR). At the RTL level, the fetch

decomposes into the sequence of steps given in Figure 2.46.

DEPT OF ECE, AGMRCET VARUR 36

EMBEDDED SYSTEM DESIGN (10EC74)

The second step in this sequence executes a READ operation from the specified memory

location. The underlying hardware will generate the read control signal and manage the

underlying timing.

Decode

The decode step is performed when the op-code field in the instruction is extracted from the

instruction and decoded by the Instruction Decoder. That information is forwarded to the

control logic, which will initiate the execute portion of the instruction cycle.

Execute

Based on the value contained in the op-code field, the control logic performs the sequence of

steps necessary to execute the instruction. Two examples are given in Figure 2.47. Store the

contents of a register in a named location in memory. Add the contents of a register to a piece

of data stored in memory and place the result back into memory, but at a different location.

DEPT OF ECE, AGMRCET VARUR 37

EMBEDDED SYSTEM DESIGN (10EC74)

Next

The address of the next instruction to be executed is dependent on the type of instruction to be

executed and, potentially, on the state of the condition flags as modified by the recently

completed instruction. At the end of the day, most reduce to algebraically adding a value to the

PC. For short jumps, the displacement may be contained in one of the operand fields of the

instruction; for longer jumps, the value may be contained in the memory location following the

instruction. Thus, at the ISA level, the several versions of the next operation are written as

ADD PC, offset;

Algebraically modifying the PC is best accomplished by using one of the arithmetic functions

in the ALU. The operation begins when the control logic places the desired offset into the

ALU’s temporary register. Next, the output of the PC is directed to the other ALU input. The

ADD instruction is executed, and the result is entered into the PC. Placing a specific value into

the PC can be done directly by the control logic since the target address is generally contained

in the instruction. At the RTL level, the next step decomposes into the sequence of steps given

in Figure 2.48.

Figure 2.48 The Next Sequence

The Verilog program in Figure 2.49 implements a behavioural model of a portion of the

datapath and control for the simple CPU presented at the start of this section. The number of

registers has been reduced, only two instructions are implemented, and the address mode field

supports four different modes. Nonetheless, the architecture implements a working system

DEPT OF ECE, AGMRCET VARUR 38

EMBEDDED SYSTEM DESIGN (10EC74)

DEPT OF ECE, AGMRCET VARUR 39

EMBEDDED SYSTEM DESIGN (10EC74)

DEPT OF ECE, AGMRCET VARUR 40

EMBEDDED SYSTEM DESIGN (10EC74)

Figure 2.49 the simple CPU

DEPT OF ECE, AGMRCET VARUR 41

EMBEDDED SYSTEM DESIGN (10EC74)

The Hardware Side: Storage Elements and Finite-State Machines

The hardware in the microprocessor is the digital circuits, the digital circuits are classified into

two namely combinational and sequential logic circuits.

 In combinational logic circuits output depends on the primary state only. Examples of such

circuits are adder, multiplexor, decoder and encoder

In sequential logic circuit the output of the circuit depends upon the present input and past

outputs. Examples of such circuits are latch, flipflop, counters and registers further sequential

circuits are classified into synchronous sequential and asynchronous sequential circuit. To

design such a complex systems we use finite state machine.

Finite State Machine (FSM) used to describe the behaviour of digital circuits using finite no of

states.

The concepts of time and state

In combinational circuit ignoring delay output is a function of input and no time constraints.

In sequential circuits output depends on what time clock reaches the circuit?, what time we get

output?, what time input reaches the circuit. Hence the time is the integrated behaviour of

sequential circuits.

State

In general state represents to the condition things are in, what they are like at a particular time?

In this context the state represents output of a circuit, there may be one or more states but

each state must be represented uniquely. To represent the output we use several variables this

set of variables is called state variables The state of the circuit will change depends on the input

and state changes with respect to time is called behaviour of the system.

State Diagram

State diagram is a graphical representation of behaviour of the circuit, it us very useful in

complex logic design. We show the transition between two states using a labelled directed line

or arrow called an arc (or edge in graph theoretic language) as illustrated in Figure 2.50.

Because the line has a direction, the state diagram is referred to as a directed graph. The head

or point of the arrow identifies the final state, and the tail or back of the arrow identifies the

initial state. Special arcs, such as the one labelled initial, reflect an external, overriding

asynchronous event, such as a reset, which places the system into a designated state, here state

DEPT OF ECE, AGMRCET VARUR 42

EMBEDDED SYSTEM DESIGN (10EC74)

a Because the graph can contain cycles, it is further qualified as a cyclic graph. The label on

each identifies what caused the change and the output(s) of system, if appropriate.

Figure 2.50 Transitions between States in a Digital

Memory Device

Example describe an evening’s entertainment. Draw state diagram graphically to expresses the

same behaviour that is described textually in Figure 2.51.

Finite State Machine – A Theoretical Model

Here we discuss different abstraction levels of Simple finite-state machines, the first view is as

shown in Figure 2.53 have no inputs other than a clock and have only primitive outputs (we

generally don’t show the clock). Such machines are referred to as autonomous clocks.

As we move to more complex designs, we will introduce inputs as well as more

sophisticated outputs. A high-level block diagram for a finite-state machine begins with the

diagram in Figure 2.54.

The outputs shown in the diagram may be the values of the state variables (as they will be in

counting-type designs), combinations of the state variables, or combinations of the state

variables and the inputs. Refining the level of detail the block diagram for the state machine

appears as shown in Figure 2.55

DEPT OF ECE, AGMRCET VARUR 43

EMBEDDED SYSTEM DESIGN (10EC74)

Figure 2.55 A High-Level Block Diagram for a Finite-State Machine

We see first that the signals out of the finite-state machine decompose into two sets: state

variables and outputs. Observe that the state variables are fed back as inputs to the system.

The diagram illustrates the essence of the strength of the machine. It has the ability to recognize

the state that it is in and then to react based on the values of the state variables and (potentially)

to the inputs to the system. The decision as to which state to go to next is determined from

the current input and the state that the machine is currently in. The present state of a finite-state

machine inherently encodes the history of the path taken to get there.

If we continue increasing the level of detail in the model, we now include the storage

elements comprising the machine and the combinational logic that implements the output

functionality and the input equations to the storage elements. The block diagram now becomes

that in Figure 2.56.

The model has n inputs, m outputs, and p state variables. A memory device is associated

with each state variable, and each state variable is associated with a memory device. At this

point no particular type of memory device is specified

DEPT OF ECE, AGMRCET VARUR 44

EMBEDDED SYSTEM DESIGN (10EC74)

 We specify the set of variables Xi to represent the n inputs to the system; Zj to represent the

m outputs from the system; and Yk to represent the p internal state variables. We define our

finite-state machine as a quintuple (function of five).

M = (I, O, S, λ,�)

I - Finite nonempty set or vector of inputs

O - Finite nonempty set or vector of outputs

S - Finite nonempty set or vector of states

� - Mapping I x S -> S

λ 1 - Mapping I x S -> O - Mealy Machine

λ 2 - Mapping S - O ->Moore Machine

There are two types of Mealy and Moore machines.

Mealy machine - λ 1 The output is a function of the present state and inputs

Moore machine - λ 2 The output function of the present state only.

Extensions to the basic diagram, such as we find in hardware/software co-design tools

or the Unified Modelling Language (UML) state charts, support a rich set of system modelling

capabilities.

