- Module wires will get worse, but only slowly
- You don't think to rethink your wires in your adder, memory

Or even your super-scalar processor core

- It does let you design more modules
- Continued scaling of uniprocessor performance is getting hard
-Machines using global resources run into wire limitations
-Machines will have to become more explicitly parallel

CMOS SUBSYSTEM DESIGN

CONTENTS

1. System
2. VLSI design flow
3. Structured design approach
4. Architectural issues
5. MOSFET as switch for logic functionality
6. Circuit Families

Restoring Logic: CMOS and its variants - NMOS and Bi CMOS
Other circuit variants
NMOS gates with depletion (zero -threshold) pull up Bi-CMOS gates
7. Switch logic: Pass Transistor and Transmission gate (TG)
8. Examples of Structured Design

MUX
DMUX
D Latch and Flop
A general logic function block

1.What is a System?

A system is a set of interacting or interdependent entities forming and integrate whole.
Common characteristics of a system are

- Systems have structure - defined by parts and their composition
- Systems have behavior - involves inputs, processing and outputs (of material, information or energy)
- Systems have interconnectivity the various parts of the system functional as well as structural relationships between each other

1.1Decomposition of a System: A Processor

5.

VLSI Design Flow

- The electronics industry has achieved a phenomenal growth -mainly due to the rapid advances in integration technologies, large scale systems design-in short due to VLSI.
- Number applications of integrated circuits in high-performance computing, telecommunications, and consumer electronics has been rising steadily.
- Current leading-edge technology trend -expected to continue with very important implications on VLSI and systems design.
- The design process, at various levels, is evolutionary in nature.
- Y-Chart (first introduced by D. Gajski) as shown in Figure1 illustrates the design flow for mast logic chips, using design activities.
- Three different axes (domains) which resemble the letter Y.
- Three major domains, namely

Behavioral domain
Structural domain

Geometrical domain

- Design flow starts from the algorithm that describes the behavior of target chip.

Figure 1. Typical VLSI design flow in three domains(Y-chart)

VLSI design flow, taking in to account the various representations, or abstractions of design are Behavioural,logic,circuit and mask layout.

Verification of design plays very important role in every step during process.
Two approaches for design flow as shown in Figure 2 are
Top-down
Bottom-up
Top-down design flow- excellent design process control
In reality, both top-down and bottom-up approaches have to be combined.
Figure 3 explains the typical full custom design flow.

Figure 2. Typical VLSI design flow

Figure 3. Typical ASIC/Custom design flow

3 Structured Design Approach

- Design methodologies and structured approaches developed with complex hardware and software.
- Regardless of the actual size of the project, basic principles of structured designimprove the prospects of success.
- Classical techniques for reducing the complexity of IC design are:

Hierarchy
Regularity
Modularity
Locality

Hierarchy: \quad| "Divide and conquer" technique involves dividing a module into sub- |
| :--- |
| modules and then repeating this operation on the sub-modules until the |
| complexity of the smaller parts becomes manageable. |

Regularity: | The hierarchical decomposition of a large system should result in not only |
| :--- |
| simple, but also similar blocks, as much as possible. Regularity usually |
| reduces the number of different modules that need to be designed and |
| verified, at all levels of abstraction. |

Modularity: | The various functional blocks which make up the larger system must have |
| :--- |
| well-defined functions and interfaces. |

Locality: \quad| Internal details remain at the local level. The concept of locality also |
| :--- |
| ensures that connections are mostly between neighboring modules, |
| avoiding long-distance connections as much as possible. |

Figure 4-Structured Design Approach -Hierarchy

Regularity

(a)

Figure5-.Structured Design Approach -Regularity

- Design of array structures consisting of identical cells.-such as parallel multiplication array.
- Exist at all levels of abstraction:
transistor level-uniformly sized.
logic level- identical gate structures
- 2:1 MUX, D-F/F- inverters and tri state buffers
- Library-well defined and well-characterized basic building block.
- Modularity: enables parallelization and allows plug-and-play
- Locality: Internals of each module unimportant to exterior modules and internal details remain at local level.

Figure 4 and Figure 5 illustrates these design approaches with an example.

4 Architectural issues

- Design time increases exponentially with increased complexity
- Define the requirements
- Partition the overall architecture into subsystems.
- Consider the communication paths
- Draw the floor plan
- Aim for regularity and modularity
- convert each cell into layout
- Carry out DRC check and simulate the performance

5. MOSFET as a Switch

nMOS transistor:
Closed (conducting) when
Gatc $=1(\mathrm{Vdd}, 5 \mathrm{~V})$
Open (non-conducting) when Gate $=0$ (ground, 0 V)

pMOS transistor:

Closed (conducting) when
Gate $=0($ ground, 0 V$)$
Open (non-conducting) when
Gate $=1(\mathrm{Vdd}, 5 \mathrm{~V})$

Note: The MOS transistor is a symmetric device. This means that the drain and source terminals are interchangeable. For a conducting $n \mathrm{MOS}$ transistor, $\mathrm{V}_{\mathrm{DS}}>$ 0 V ; for the $p \mathrm{MOS}$ transistor, $\mathrm{V}_{\mathrm{DS}}<0 \mathrm{~V}$ (or $\mathrm{V}_{\mathrm{SD}}>0 \mathrm{~V}$).

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

For n MOS switch, source is typically tied to ground and is used to pull-down signals:

$$
\begin{aligned}
& \text { when Gate }=1, \text { Out }=0, \text { OV }) \\
& \text { when Gate }=0, \text { Out }=\angle(\text { high impedance })
\end{aligned}
$$

For $p \mathrm{MOS}$ switch, source is typically tied to Vdd, used to pull signals $u p$:

$$
\begin{aligned}
& \text { when Gate }=0, \text { Out }=1(\mathrm{Vdd}) \\
& \text { when Gate }=1, \text { Out }=Z(\text { high impedance })
\end{aligned}
$$

5.1 Parallel connection of Switches..

5.2 Series connection of Switches..

5.3 Series and parallel connection of Switches..

nMOS: $1=O N$
PMOS: $O=O N$
Series: both must be ON
Parallef: either can be ON
(a)
6. Circuit Families : Restoring logic

CMOS INVERTER

A	Y
$\mathbf{0}$	$\mathbf{1}$
1	0

6.1 NAND gate Design..

NAND Gate Design

p-type transistor tree will provide " 1 " values of logic function n-type transistor tree will provide " O " values of logic function

Truth Table (NAND):

AB	
00	1
01	1
10	1
11	0

$$
\begin{aligned}
& \mathrm{P}_{\text {tree }}=\overline{\mathrm{A}}+\overline{\mathrm{B}} \\
& \mathrm{~N}_{\text {tree }}=\mathrm{A} \cdot \mathrm{~B}
\end{aligned}
$$

A	B	Y
0	0	1
0	1	
1	0	
1	1	

A	B	Y
0	0	1
0	1	1
1	0	
1	1	

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

NAND gate Design..
Y pulls low if ALL inputs are 1
Y pulls high if ANY input is 0

6.2 NOR gate Design.. NOR Gate Design

p-type transistor tree will provide " 1 " values of logic function n-type transistor tree will provide " O " values of logic function

Truth Table:

$A B$	
00	1
01	0
10	0
11	0

$$
\begin{aligned}
& \mathrm{P}_{\text {tree }}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \\
& \mathrm{~N}_{\text {tree }}=\mathrm{A}+\mathrm{B}
\end{aligned}
$$

4-input CMOS NOR gate

CMOS INVERTER

Note: Ideally there is no static power dissipation. When "I" is fully is high or fully low, no current path between Vdd and GND exists (the output is usually tied to the gate of another MOS transistor which has a very high input impedance).

Power is dissipated as "I" transistions from $0 \rightarrow 1$ and $1 \rightarrow 0$ and a momentory current path exists between Vdd and GND. Power is also dissipated in the charging and discharging of gate capacitances.

6.3 CMOS Properties

Complementary CMOS logic gates

nMOS pull-down network
pMOS pull-up netw CMOS
Properties ork
a.k.a. static CMOS ,steady state
is reached to 0 or 1 .(no dc path
from Vdd to gnd)

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
- Series nMOS: $\mathrm{Y}=0$ when both inputs are 1
- Thus $\mathrm{Y}=1$ when either input is 0
- Requires parallel pMOS
- Rule of Conduction Complements
- Pull-up network is complement of pull-down
- Parallel -> series, series -> parallel
- Output signal strength is independent of input.-level restoring
- Restoring logic. Ouput signal strength is either $\mathrm{V}_{\text {oh }}$ (output high) or V_{ol}. (output low).
- Ratio less logic :output signal strength is independent of pMOS device size to nMOS size ratio.
- significant current only during the transition from one state to another and - hence power is conserved..
- Rise and fall transition times are of the same order,
- Very high levels of integration,
- High performance.

6.4 Complex gates..

$$
\mathrm{F}=\overline{\mathrm{AB}+\mathrm{CD}} \Rightarrow \mathrm{~N}_{\text {tree }} \text { will provide 0's, } \mathrm{P}_{\text {tree }} \text { will provide } 1 \text { 's }
$$

O's of function F is $\bar{F}, \Rightarrow \bar{F}=\overline{\overline{A B}+C D}=A B+C D$
n MOS transistors need high true inputs, so it is desirable for all input variables to be high true, just as above.

Likewise, a $\mathrm{P}_{\text {tree }}$ will provide I's.

$$
\mathrm{F}=\overline{\mathrm{AB}+\mathrm{CD}}, \quad \text { need a form involving } \overline{\mathrm{A}}, \overline{\mathrm{~B}}, \overline{\mathrm{C}}, \overline{\mathrm{D}}
$$

Apply DeMorgan's Theorem:
$\mathrm{F}=\overline{\mathrm{AB}} \cdot \overline{\mathrm{CD}}=(\overline{\mathrm{A}}+\overline{\mathrm{B}}) \cdot(\overline{\mathrm{C}}+\overline{\mathrm{D}})$

Implementation \Rightarrow

Can also use K-maps:

$$
F=\overline{A B+E D}
$$

AB
1
1

For $\mathrm{N}_{\text {tree, }}$ minimize 0's; for $\mathrm{P}_{\text {tree }}$, minimize 1's

$$
\mathrm{N}_{\text {tree }}=\mathrm{AB}+\mathrm{CD}
$$

$$
\begin{aligned}
\mathrm{P}_{\text {tree }} & =\overline{\mathrm{A}} \cdot \overline{\mathrm{C}}+\overline{\mathrm{A}} \cdot \overline{\mathrm{D}}+\overline{\mathrm{B}} \cdot \overline{\mathrm{C}}+\overline{\mathrm{B}} \cdot \overline{\mathrm{D}} \\
& =\overline{\mathrm{A}}(\overline{\mathrm{C}}+\overline{\mathrm{D}})+\overline{\mathrm{B}}(\overline{\mathrm{C}}+\overline{\mathrm{D}}) \\
& =(\overline{\mathrm{A}}+\overline{\mathrm{B}}) \cdot(\overline{\mathrm{C}}+\overline{\mathrm{D}})
\end{aligned}
$$

6.5 Complex gates AOI..

Compound gates can do any inverting function

$$
Y=\overline{A \square B+C \square D} \text { (AND-AND-OR-INVERT, AOI22) }
$$

$A-\zeta$
$B-\amalg$

$-$

$\rightarrow{ }_{B}^{A}$

(a)
(b)
A \square b- B \qquad
(c)
$\rightarrow \mathrm{C}$

(d)

C-
(f)
(e)

unit inverter
$Y=\bar{A}$

$$
Y=\frac{\mathrm{AOl21}}{A \square B+C}
$$

$$
Y=\frac{\mathrm{AOI} 22}{A \sqcap B+C \square D}
$$

$$
Y=\frac{\text { Complex AOI }}{A \llbracket(B+C)+D \sqcap E}
$$

$A->O-Y$

$g_{A}=6 / 3$
$g_{B}=6 / 3$
$g_{C}=5 / 3$
$p=7 / 3$
$\begin{array}{ll}B-d \sqrt{6} & \\ C-d[\sqrt{6} & A-d \sqrt{3} \\ D-d \sqrt{6} & E-d \sqrt{6} \\ E-\sqrt{2} & A-\sqrt{2} \\ D-\sqrt{2} & B-\sqrt{2} \\ C-l \mid 2\end{array}$

$$
g_{A}=6 / 3
$$

$g_{A}=5 / 3$
$g_{B}=6 / 3$
$g_{C}=6 / 3$
$g_{D}=6 / 3$
$p=12 / 3$
$g_{B}=8 / 3$
$g_{C}=8 / 3$
$g_{D}=8 / 3$
$g_{E}=8 / 3$
$p=16 / 3$
6.6 Circuit Families : Restoring logic CMOS Inverter- Stick diagram

6.7 Restoring logic CMOS Variants:

nMOS Inverter-stick diagram

Stick diagram

- Basic inverter circuit: load replaced by depletion mode transistor
- With no current drawn from output, the current I_{ds} for both transistor must be same.
- For the depletion mode transistor, gate is connected to the source so it is always on and only the characteristic curve $\mathrm{V}_{\mathrm{gs}}=0$ is relevant.
- Depletion mode is called pull-up and the enhancement mode device pulldown.
- Obtain the transfer characteristics.
- As $\mathrm{V}_{\text {in }}$ exceeds the p.d. threshold voltage current begins to flow, $\mathrm{V}_{\text {out }}$ thus decreases and further increase will cause p.d transistor to come out of saturation and become resistive.
- p.u transistor is initially resistive as the p.d is turned on.
- Point at which $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }}$ is denoted as $\mathrm{V}_{\text {inv }}$
- Can be shifted by variation of the ratio of pull-up to pull-down resistances $-\mathrm{Z}_{\mathrm{p} . \mathrm{u}} / \mathrm{Z}_{\mathrm{p} . \mathrm{d}}$
- Z- ratio of channel length to width for each transistor

For 8:1 nMOS Inverter

$\mathrm{Z}_{\text {p.u. }}=\mathrm{L}_{\text {p.u. }} / \mathrm{W}_{\text {p.u }}=8$
$\mathrm{R}_{\text {p.u }}=\mathrm{Z}_{\text {p.u. }} * \mathrm{R}_{\mathrm{s}}=80 \mathrm{~K}$
similarly
$\mathrm{R}_{\mathrm{p} . \mathrm{d}}=\mathrm{Z}_{\mathrm{p} . \mathrm{d}} * \mathrm{R}_{\mathrm{s}}=10 \mathrm{~K}$
Power dissipation(on) $\mathrm{P}_{\mathrm{d}}=\mathrm{V}^{2} / \mathrm{R}_{\mathrm{p} . \mathrm{u}}+\mathrm{R}_{\mathrm{p} . \mathrm{d}}=0.28 \mathrm{mV}$
Input capacitance $=1 \mathrm{C}_{\mathrm{g}}$

For 4:1 nMOS Inverter

```
\(\mathrm{Z}_{\text {p.u. }}=\mathrm{L}_{\text {p.u. }} / \mathrm{W}_{\text {p.u }}=4\)
\(\mathrm{R}_{\text {p.u }}=\mathrm{Z}_{\text {p.u. }} * \mathrm{R}_{\mathrm{s}}=40 \mathrm{~K}\)
similarly
\(\mathrm{R}_{\text {p.d }}=\mathrm{Z}_{\mathrm{p} . \mathrm{d}} * \mathrm{R}_{\mathrm{s}}=5 \mathrm{~K}\)
Power dissipation(on) \(P_{d}=V^{2} / R_{\text {p.u }}+R_{\text {p.d }}=0.56 \mathrm{mV}\)
Input capacitance \(=2 \mathrm{C}_{\mathrm{g}}\)
```


6.8Restoring logic CMOS Variants: BiCMOS Inverter-stick diagram

- A known deficiency of MOS technology is its limited load driving capabilities (due to limited current sourcing and sinking abilities of pMOS and nMOS transistors.)
- Output logic levels good-close to rail voltages
- High input impedance
- Low output impedance
- High drive capability but occupies a relatively small area.
- High noise margin
- Bipolar transistors have
- higher gain
- better noise characteristics
- better high frequency characteristics
- BiCMOS gates can be an efficient way of speeding up VLSI circuits
- CMOS fabrication process can be extended for BiCMOS
- Example Applications

CMOS- Logic
BiCMOS- I/O and driver circuits
ECL- critical high speed parts of the system
6.9 Circuit Families : Restoring logic CMOS NAND gate

6.10 Restoring logic CMOS Variants:_nMOS NAND gate

Schematic

6.11 Restoring logic CMOS Variants: BiCMOS NAND gate

- For nMOS Nand-gate, the ratio between pull-up and sum of all pull-downs must be $4: 1$.
- nMOS Nand-gate area requirements are considerably greater than corresponding nMOS inverter
- nMOS Nand-gate delay is equal to number of input times inverter delay.
- Hence nMOS Nand-gates are used very rarely
- CMOS Nand-gate has no such restrictions
- BiCMOS gate is more complex and has larger fan-out.

7.Circuit Families :Switch logic: Pass Transistor

Why? n MOS switches cannot pass a logic " 1 " without a threshold voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$ drop.

The $n \mathrm{MOS}$ transistor will stop conducting if $\mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{T}}$. Let $\mathrm{V}_{\mathrm{T}}=0.7 \mathrm{~V}$,

$$
\underset{\mathrm{S} \rightarrow \mathrm{D}}{\substack{\mathrm{G} \\ \mathrm{OV} \rightarrow \mathrm{SV}\\}} \quad \underset{\mathrm{DV} \rightarrow ?}{ }
$$

As source goes from $0 \mathrm{~V} \rightarrow 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}$ goes from $5 \mathrm{~V} \rightarrow 0 \mathrm{~V}$.
When $\mathrm{V}_{\mathrm{S}}>4.3 \mathrm{~V}$, then $\mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{T}}$, so switch stops conducting.
V_{D} left at $5 \mathrm{~V}-\mathrm{V}_{\mathrm{T}}=5 \mathrm{~V}-0.7 \mathrm{~V}=4.3 \mathrm{~V}$ or $\mathrm{Vdd}-\mathrm{V}_{\mathrm{T}}$.
For $p \mathrm{MOS}$ transistor, V_{T} is negative.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T} p}=-0.7 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}-5 \mathrm{~V}=-5 \mathrm{~V}
\end{aligned}
$$

conducting

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{T} p} \quad \text { or } \quad\left|\mathrm{V}_{\mathrm{GS}}\right|>\mathrm{V}_{\mathrm{T} p} \mid \\
& -5 \mathrm{~V}<-0.7 \mathrm{~V} \quad 5 \mathrm{~V}>0.7 \mathrm{~V}
\end{aligned}
$$

How will pMOS pass a "0"?
When $\left|\mathrm{V}_{\mathrm{GS}}\right|<\left|\mathrm{V}_{\mathrm{T} p}\right|$, stop conducting

So when $\left|\mathrm{V}_{\mathrm{GS}}\right|<1-0.7 \mathrm{~V} \mid, \mathrm{V}_{\mathrm{D}}$ will go from $5 \mathrm{~V} \rightarrow \mathbf{0 . 7 V}$,
a weak " $\underline{0}$ "

7.1 Switch logic: Pass Transistor

$\frac{g}{\stackrel{g}{\triangleleft} d}$

$$
\begin{gathered}
\mathrm{g}=0 \\
\mathrm{~s} \rightarrow \circ \mathrm{~d} \\
\mathrm{~g}=1 \\
\mathrm{~s} \rightarrow \mathrm{C}
\end{gathered}
$$

$$
\begin{array}{r}
\text { Input } \mathrm{g}=1 \text { Output } \\
0 \xrightarrow{\circ} \mathrm{O} \text { strong } 0
\end{array}
$$

$$
\underset{\longrightarrow}{g}=1
$$

$s \stackrel{+}{g} \stackrel{+}{\leftrightharpoons} d$

$$
\begin{gathered}
g=0 \\
s \longrightarrow-\infty \\
g=1
\end{gathered}
$$

$\begin{aligned} & \text { Input } \\ & \mathrm{g}=0 \\ & 0 \rightarrow \text { Output } \\ & \text { degraded } 0\end{aligned}$

7.1 Switch logic: Pass Transistor-nMOS in series

Only one threshold voltage drop across series of $n \mathrm{MOS}$ transistors

7.2 :Switch logic: Transmission gates

How are both a stronge " 1 " and a strong "O" passed? Transmission gate pass transistor configuration

$$
\begin{aligned}
& \text { When } \mathrm{I}=1 \text {, } \\
& \qquad \begin{aligned}
\mathrm{B} & =\text { strong } 1, \text { if } \mathrm{A}=1 \text {; } \\
\mathrm{B} & =\text { strong } \mathrm{O}, \text { if } \mathrm{A}=0
\end{aligned} \\
& \text { When } \mathrm{I}=\mathrm{O} \text {, non-conducting }
\end{aligned}
$$

Pass transistors produce degraded outputs Transmission gates pass both 0 and 1 well

8 Structured Design-Tristate

- Tristate buffer produces \mathbf{Z} when not enabled

EN	A	Y
0	0	
0	1	
1	0	
1	1	

Tristate buffer produces Z when not enabled

EN	A	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

8.1 Structured Design-Nonrestoring Tristate

- Transmission gate acts as tristate buffer
- Only two transistors
- But nonrestoring
- Noise on A is passed on to Y
+ No V_{1} drop
- Requires inverted clock

EN

EN

8.3 Structured Design-Tristate Inverter

- Tristate inverter produces restored output
- Violates conduction complement rule
- Because we want azoutput

- Tristate inverter produces restored output
- Violates conduction complement rule
- Because we want a Z output

$\mathrm{EN}=0$

$Y=' Z$

8.4 Structured Design-Multiplexers

- 2:1 multiplexer chooses between two inputs

S	D1	D0	Y
0	X	0	0
0	X	1	1
1	0	X	0
\mathbf{S}	D	D	D 0
\mathbf{X}	$\mathbf{1}$		
0	X	$\mathbf{0}$	
0	X	1	
1	0	X	
1	1	X	

8. 5 Structured Design-Mux Design.. Gate-Level

$$
Y=S D_{1}+\bar{S} D_{0} \text { (too many transistors) }
$$

- How many transistors are needed?
- How many transistors are needed? 20

8.6 Structured Design-Mux Design-Transmission Gate

- Nonrestoring mux uses two transmission gates
- Only 4 transistors

Inverting Mux

- Inverting multiplexer
- Use compound AOI22
- Or pair of tristate inverters
- Noninverting multiplexer adds an inverter

8.7 Design-4:1 Multiplexer

- $4: 1$ mux chooses one of 4 inputs using two selects

Two levels of 2:1 muxes
Or four tristates

9 Structured Design-D Latch

- When CLK = 1 , latch is transparent
- D flows through to Q like a buffer
- When CLK $=0$, the latch is opaque
- Q holds its old value independent of D
- a.k.a. transparent latch or level-sensitive latch


```
- Register
stores data when
``` clockrises


\subsection*{9.1 D Latch Design}
- Multiplexer chooses D or old Q

\subsection*{9.2 D Latch Operation}

\section*{Structured Design-Latch Design}
- Inverting buffer

Restoring
D

No backdriving
Fixes either
Output noise sensitivity
Or diffusion input
Inverted output
D

\subsection*{9.3 Structured Design-D Flip-flop}
- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

- Structured Design-D Flip-flop Design
- Built from master and slave D latches

\subsection*{9.4 D Flip-flop Operation}

\subsection*{9.5 Race Condition}
- Back-to-back flops can malfunction from clock skew
- Second flip-flop fires late
- Sees first flip-flop change and captures its result
- Called hold-time failure or race condition
```

